
Benjamin Erb, Dominik Meißner,
Jakob Pietron, Frank Kargl
Ulm University, Germany

Barcelona, Spain
June 21st, 2017

Chronograph — A Distributed Processing
Platform for Online and Batch Computations
on Event-sourced Graphs

11th ACM International Conference on
Distributed and Event-Based Systems

“Many applications today are data-intensive, as

opposed to compute-intensive. Raw CPU power is

rarely a limiting factor for these applications —

bigger problems are usually the amount of data,

the complexity of data , and the speed at which

it is changing .”

—Martin Kleppmann

Source: M. Kleppmann (2017), Designing Data-Intensive Applications. O’Reilly.

3 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Initial Challenge

Real-World Application Domain

Online Graph Application

4 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Live Graph Applications
Characteristics

1 a graph captures a model of the real world
mapping of connectedness

2 a graph enables computations
style and granularity of processing operations

3 changes occur in the real world & in the system
progress via events

4 the system interacts with the real world (bidirectionally!)
system also influences the real world

5 the evolution of state is relevant for the applications
data lineage, time-series, and retrospective insights

5 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Designated Computations & Operations
Requirements

How does the graph currently evolve?
topology and state updates
execution of online computations

What has been the graph state at a specific point in time?
graph state retrospection
basis for various offline computations

How has the status of a single vertex changed over time?
retrospection of vertex history
basis for time-series computations

How do graph states of the evolving graph differ?
comparison of different graph states
basis for temporal batch computations

6 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Related Work
Existing Approaches and Partial Solutions

graph computing systems
batch: e.g., Pregel, PowerGraph,
temporal: e.g., GoFFish, ImmortalGraph

online processing systems
event processing engines: e.g., Storm

general purpose data processing systems
w/ graph libraries: e.g., Spark+GraphX, Flink+Gelly
iterative dataflow: e.g., Naiad

hybrid online & offline computation models
Lambda/Kappa architectures

storage systems
event stores & time-series databases
graph databases

Live Graph (Actor-based System)

asynchronicity, distribution, liveness

“Freezed” Graph (Decoupled Snapshots)

consistency, global state

Graph Evolution (Event Sourcing)

graph lineage

8 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Decoupling Online & Offline Processing
Event Sourcing, Snapshotting & Branching

Graph Snapshots

Live Graph

Decoupled
Batch Processing
on Branches

Event-driven
Graph Computing

9 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Event Sourcing of Graphs: Topology Changes

addVertex(G,u)

addVertex(G,v)

addEdge(G,u,v)

addVertex(G,x)

addEdge(G,x,v)

removeEdge(G,u,v)

removeVertex(G,u)

→ VERTEX_ADDED(G,u)

→ VERTEX_ADDED(G,v)

→ EDGE_ADDED(G,u,v)

→ VERTEX_ADDED(G,x)

→ EDGE_ADDED(G,x,v)

→ EDGE_REMOVED(G,u,v)

→ VERTEX_REMOVED(G,u)

Command Log Event Log Graph State

u

v
u

u

v

x

v

u

x

v

u

x

v

u

x

v

Chronograph: dedicated log for each vertex, tracking of vertex state

10 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Vertices: Event-sourced Actors
Asynchronous, message-driven, vertex-centric, decentralized

Incoming messages from adjacent vertices

Outgoing messages to adjacent vertices

Event-sourced vertex state

Behavior function

(St+1, ft+1,[mout]) = ft(min, St)

Delta Events: Et = ∆(St, St+1) (e.g., JSON Patch)

11 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Command & Event Sourcing of Vertices
Versioning & Causality Tracking

eA:7 eA:8

eB:11 eC:3

cA:8

cB:11 cC:3

Actor A

Actor B

Actor C

Command (c)

Event (e)

Computation

Message (m)

m{A:7}

m'{B:11}

m{B:11}

m{A:7}m{B:11}

m'{B:11}

Snapshots
causally consistent
snapshot types

retrospective
asynchronous/latent
periodical

12 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Actor/Vertex Types
Stateful & I/O Actors

stateful vertices/actors
typed by behavior
stateful
cannot cause side-effects
fully event-sourced

I/O vertices/actors
allow real world interactions
either ingress or outgoing communication
event sourcing only for messages within Chronograph
currently TCP-based socket to outside process

13 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Programming & Processing Models
Models Supported by the chronograph Concept

Model Initial Data Set Locality Time Model
Main Chronograph model live graph vertex-local continuous
MapReduce (vertex-based) graph snapshot vertex-local snapshotted
MapReduce (edge-based) graph snapshot vertex-local snapshotted
Pregel graph snapshot vertex-local snapshotted
Event Folding log sequence single-vertex time series
Command Folding log sequence single-vertex time series
MapReduce (temporal) graph snapshot vertex-local snapshotted/iterative
Pause/Shift/Resume graph snapshot vertex-local iterative

13 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Programming & Processing Models
Models Supported by the chronograph Concept

Model Initial Data Set Locality Time Model
Main Chronograph model live graph vertex-local continuous
MapReduce (vertex-based) graph snapshot vertex-local snapshotted
MapReduce (edge-based) graph snapshot vertex-local snapshotted
Pregel graph snapshot vertex-local snapshotted
Event Folding log sequence single-vertex time series
Command Folding log sequence single-vertex time series
MapReduce (temporal) graph snapshot vertex-local snapshotted/iterative
Pause/Shift/Resume graph snapshot vertex-local iterative

concurrent & asynchronous
vertex operations

13 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Programming & Processing Models
Models Supported by the chronograph Concept

Model Initial Data Set Locality Time Model
Main Chronograph model live graph vertex-local continuous
MapReduce (vertex-based) graph snapshot vertex-local snapshotted
MapReduce (edge-based) graph snapshot vertex-local snapshotted
Pregel graph snapshot vertex-local snapshotted
Event Folding log sequence single-vertex time series
Command Folding log sequence single-vertex time series
MapReduce (temporal) graph snapshot vertex-local snapshotted/iterative
Pause/Shift/Resume graph snapshot vertex-local iterative

graph
snapshot

13 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Programming & Processing Models
Models Supported by the chronograph Concept

Model Initial Data Set Locality Time Model
Main Chronograph model live graph vertex-local continuous
MapReduce (vertex-based) graph snapshot vertex-local snapshotted
MapReduce (edge-based) graph snapshot vertex-local snapshotted
Pregel graph snapshot vertex-local snapshotted
Event Folding log sequence single-vertex time series
Command Folding log sequence single-vertex time series
MapReduce (temporal) graph snapshot vertex-local snapshotted/iterative
Pause/Shift/Resume graph snapshot vertex-local iterative

log folding

13 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Programming & Processing Models
Models Supported by the chronograph Concept

Model Initial Data Set Locality Time Model
Main Chronograph model live graph vertex-local continuous
MapReduce (vertex-based) graph snapshot vertex-local snapshotted
MapReduce (edge-based) graph snapshot vertex-local snapshotted
Pregel graph snapshot vertex-local snapshotted
Event Folding log sequence single-vertex time series
Command Folding log sequence single-vertex time series
MapReduce (temporal) graph snapshot vertex-local snapshotted/iterative
Pause/Shift/Resume graph snapshot vertex-local iterative

2nd graph
snapshot

1st graph
snapshot

14 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Chronograph System
Conceptual Overview

Distributed Infrastructure

Event-Sourced Actor Platform

Chronograph Library

Event-Driven Graph Applications

15 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Chronograph Worker Architecture
Shard Worker & Processing Worker(s)

Scheduling

Chronograph Shard Worker Processing Workers

In-memory State Cache

Graph Appl. (Vertex Behaviors) Shard Mgmt. Querying Processing Jobs

State Reconstruction Snapshotting

Event Log Persistence (LevelDB)

In-Memory
Processing
ModulesMessaging

Client

Distributed Messaging Service (Apache Kafka)

Distributed Infrastructure

16 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Web Crawling with Chronograph
Example Application

I/O vertices
scrape new

websites

The live graph is
used for online
computations

Snapshots allow for
 batch processing

Queries and results

17 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Performance Evaluation
Scenarios and Methodology

evaluation workloads
small web graph (based on a SNAP data set)

60,826 vertices, 143,766 edges
DEBS’16 Grand challenge: stream of social graph events

42,934 vertices, 1,241,381 edges

methodology
repeated and isolated runs of all workloads (5x)
collection and descriptive analysis of measurements
test setup

four bare-metal machines in dedicated LAN (1 GigE)
Intel Xeon E31220 (4x3.10 GHz); 16 GB RAM; Ubuntu 14.04 LTS;

measurements
application and worker metrics
process and system metrics

18 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Performance Results: Fast vs. Exact Results
Online vs. Batch Computations

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

p
e
rc

e
n
ta

g
e
 o

f
p

a
g

e
s

w
it

h
 p

a
g

e
ra

n
k

a
ss

ig
n
e
d

t [s]

Approximation Results

percentage of pages with pagerank assigned
relative error of assigned pagerank values

online computation
batch computation

example web graph (60,826 vertices, 143,766 edges)
BSP/Pregel PageRank algorithm (offline) on completed graph
online algorithm on evovling graph (based on Sankaralingam et al., 2003)

19 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Performance Results: Scalability
Application Messages per Second

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

1 x 1 1 x 2 2 x 2 4 x 2 4 x 4

p
ro

ce
ss

e
d

 m
e
ss

a
g

e
s/

se
c

#Machines x #Workers

Horizontal Throughput Scalability

social graph workload
web graph workload

different workload characteristics: reactive vs. reactive + active

20 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Performance Results: Message Latencies
Application-level Latencies between Vertices

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40

p
e
rc

e
n
ta

g
e
 o

f
m

e
ss

a
g

e
s

latency in ms

Message Latencies

workload: social graph example; 4x4 setup
distribution of application-level message latencies (vertex-to-vertex)
latency statistics: mean=5.02 ms, P95=15.16 ms, P99=29.18 ms

21 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Performance Results: Graph Reconstructions
Snapshotting & Reconstruction Times

Average SD
Graph snapshotting 3.65 ms 0.80 ms
Graph reconstruction 2701.48 ms 64.31 ms
Event restore rate 75728.49 events/s 1766.01 events/s

web graph workload (60,826 vertices)

test setup: 4 machines with 2 workers each

22 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Future Work
Remaining Challenges & Future Directions

in-depth performance analysis and optimizations
speed-up of worker performance
large-scale setups
history pruning and log compaction

advanced operations on vertex event logs
retroactive modifications on branched logs
(partial) re-executions

more real-world use cases and evaluations
centralized backend system for IoT applications (LoRaWAN
topologies)

23 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Conclusion & Take Aways
Chronograph: Online and Batch Processing on Event-sourced Graphs

event-sourced graph computing
asynchronous, message-based computing model for vertices
distributed event sourcing of the entire graph evolution
arbitrary reconstructions on vertex and graph level

Chronograph prototype platform
JavaScript-based runtime environment for graph applications
support for various graph processing models
single platform for online & offline computations on graphs

Thanks!

Questions?
Feedback?

Contact

WWW: uulm.de/?erb
Mail: benjamin.erb@uni-ulm.de
Twitter: @b_erb

http://uulm.de/?erb
mailto:benjamin.erb@uni-ulm.de
http://twitter.com/b_erb

24 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Sources & Material

Slide deck license
This work is licensed under a CC-BY-SA 4.0 license.

Title image
untitled by milivanily; CC0 License

Icon sets
PICOL-Iconsmade by Melih Bilgil; licensed under CC-BY 3.0
Font Awesome; licensed under the SIL OFL 1.1
Material Design Icons by Google; licensed under CC-BY-SA 4.0

25 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Reference
Original Publication

Benjamin Erb, Dominik Meißner, Jakob Pietron, and
Frank Kargl. 2017. Chronograph — A Distributed Pro-
cessing Platform for Online and Batch Computations
on Event-sourced Graphs. In Proceedings of DEBS ’17,
Barcelona, Spain, June 19-23, 2017, 10 pages.
DOI: 10.1145/3093742.3093913

http://dx.doi.org/10.1145/3093742.3093913

Backup Slides

27 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Command Sourcing & Event Sourcing of Actors
Separation of Log Entries

Actor A

Actor B

Actor C

Command (c)

Event (e)

Computation

Message (m)

[1]: B. Erb, G. Habiger, and F. J. Hauck, “On the potential of event sourcing for retroactive actor-based programming”, ACM PMLDC’16

28 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Command Sourcing & Event Sourcing of Actors
Versioning & Causality Tracking

eA:7 eA:8

eB:11 eC:3

cA:8

cB:11 cC:3

Actor A

Actor B

Actor C

Command (c)

Event (e)

Computation

Message (m)

m{A:7}

m'{B:11}

m{B:11}

[1]: B. Erb, G. Habiger, and F. J. Hauck, “On the potential of event sourcing for retroactive actor-based programming”, ACM PMLDC’16

29 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Event Log: State Modifications as Delta Events
Event-sourced Graph Programming Model

e.g., JSON Patch (RFC 6902)

Delta State Computation:

Eventt = ∆(Statet, Statet+1)

Left Fold of Updates:

fold({}, Event1, . . . , Eventt) = Statet+1

30 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Distibuted Event Sourcing
Vertex-local Event Logs

Vertex A

System Log

Vertex B

Vertex C

Vertex D

Vertex Spawn Events

Initial Local Events

31 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Checkpointing
Speeding up Reconstruction Times

Actor Event Log eo

incoming messages

e1 e2 e4e3 e5

Δ(s0,s1)s0 = { } Δ(s1,s2) Δ(s2,s3) Δ(s3,s4) Δ(s4,s5)
delta-based event sourcing

31 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Checkpointing
Speeding up Reconstruction Times

Actor Event Log eo

incoming messages

e1 e2 e4e3 e5

Δ(s0,s1)s0 = { } Δ(s1,s2) Δ(s2,s3) Δ(s3,s4) Δ(s4,s5)
delta-based event sourcing

Δ({},s3)

full-state checkpointing

Δ({},s5)

32 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Chronograph Programming API
Event-sourced Stateful Vertices

// event-sourced vertex behavior function
function vertexBehavior(message: incoming , state:

currentState)
sendMessage(vertex: neighbour , message: content);
spawnVertex(function: behavior);
spawnEdge(vertex: target);
removeEdge(vertex: target);
listOutgoingEdges();
shutdownVertex();
return newState;

33 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Vertex-based MapReduce API
Snapshot-based Batch Processing

// user-defined map function for each vertex
function mapVertex(state: vertex)

emit(key, value);

// user-defined reduce function
function reduce(string: key, list: values)

return reducedResult;

34 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Edge-based MapReduce API
Snapshot-based Batch Processing

// user-defined map function for each edge
function mapEdge(state: vertexOut , state: vertexIn)

emit(key, value);

// user-defined reduce function
function reduce(string: key, list: values)

return reducedResult;

35 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Pregel-based API
Snapshot-based Batch Processing

// user-defined compute function for Pregel-based API
function compute(messages: incoming[], state: currentState)

sendMessageTo(vertex: neighbour , message: content);
getOutEdgeIterator();
getSuperstep();
voteToHalt();
spawnVertex(function: behavior);
spawnEdge(vertex: target);
removeEdge(vertex: target);
return newState;

36 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Command Folding & Event Folding APIs
Log-based Event Processing

Event Folding
// user-defined event folding function
function fold(state: old, state: new, aggregate: foldState)

return foldState;

Command Folding
// user-defined command folding function
function fold(message: command , aggregate: foldState)

return foldState;

37 Chronograph: Online and Batch Processing on Event-sourced Graphs | Benjamin Erb, Ulm University | DEBS 2017

Temporal MapReduce API
Snapshot-based Temporal Batch Processing

// user-defined temporal map function for each vertex
function mapTemporal(state: vertex@s1 , state: vertex@s2)

emit(key, value);

// user-defined reduce function
function reduce(string: key, list: values)

return reducedResult;

	Backup Slides

