15



# ulm university universität



Benjamin Erb, Dominik Meißner, Jakob Pietron, Frank Kargl Ulm University, Germany

Barcelona, Spain June 21st, 2017

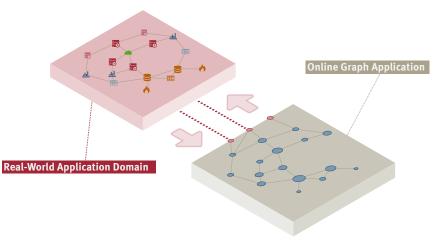
#### CHRONOGRAPH — A Distributed Processing Platform for Online and Batch Computations on Event-sourced Graphs

11th ACM International Conference on Distributed and Event-Based Systems

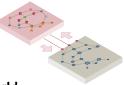
"Many applications today are data-intensive, as opposed to compute-intensive. Raw CPU power is rarely a limiting factor for these applications bigger problems are usually the amount of data, the complexity of data, and the speed at which it is changing."

Martin Kleppmann

### **Initial Challenge**



### Live Graph Applications Characteristics



- a graph captures a model of the real world
   mapping of connectedness
- a graph enables computations
  - style and granularity of processing operations
- **changes occur** in the real world & in the system
  - progress via events
- the system interacts with the real world (bidirectionally!)
  - system also influences the real world
- 5 the evolution of state is relevant for the applications
  - data lineage, time-series, and retrospective insights

### Designated Computations & Operations Requirements

#### How does the graph currently evolve?

- topology and state updates
- execution of online computations
- What has been the graph state at a specific point in time?
  - graph state retrospection
  - basis for various offline computations

#### How has the status of a single vertex changed over time?

- retrospection of vertex history
- basis for time-series computations
- How do graph states of the evolving graph differ?
  - comparison of different graph states
  - basis for temporal batch computations

### **Related Work**

**Existing Approaches and Partial Solutions** 

- graph computing systems
  - batch: e.g., Pregel, PowerGraph,
  - temporal: e.g., GoFFish, ImmortalGraph
- online processing systems
  - event processing engines: e.g., Storm
- general purpose data processing systems
  - w/ graph libraries: e.g., Spark+GraphX, Flink+Gelly
  - iterative dataflow: e.g., Naiad
- hybrid online & offline computation models
  - Lambda/Kappa architectures
- storage systems
  - event stores & time-series databases
  - graph databases

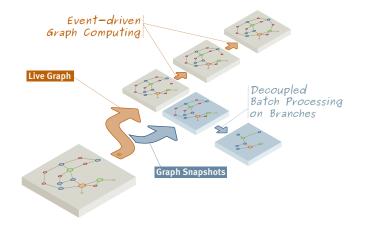
LIVE GRAPH (ACTOR-BASED SYSTEM) asynchronicity, distribution, liveness

"FREEZED" GRAPH (DECOUPLED SNAPSHOTS) consistency, global state

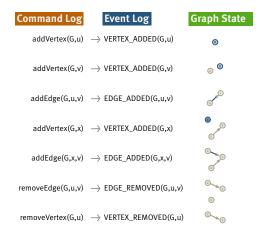
GRAPH EVOLUTION (EVENT SOURCING) graph lineage

### Decoupling Online & Offline Processing

#### Event Sourcing, Snapshotting & Branching



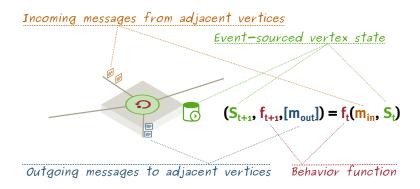
### Event Sourcing of Graphs: Topology Changes



#### CHRONOGRAPH: dedicated log for each vertex, tracking of vertex state

### **Vertices: Event-sourced Actors**

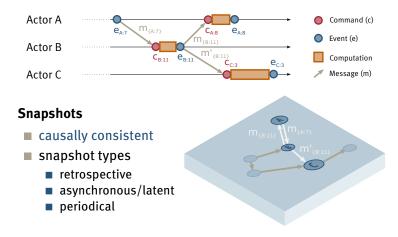
#### Asynchronous, message-driven, vertex-centric, decentralized



Delta Events:  $E_t = \Delta(S_t, S_{t+1})$  (e.g., JSON Patch)

### **Command & Event Sourcing of Vertices**

#### Versioning & Causality Tracking



# Actor/Vertex Types

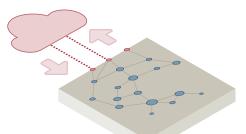
Stateful & I/O Actors

### stateful vertices/actors

- typed by behavior
- stateful
- cannot cause side-effects
- fully event-sourced

### I/O vertices/actors

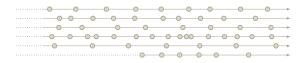
- allow real world interactions
- either ingress or outgoing communication
- event sourcing only for messages within CHRONOGRAPH
- currently TCP-based socket to outside process



Models Supported by the CHRONOGRAPH Concept

#### Model

Main CHRONOGRAPH model MapReduce (vertex-based) MapReduce (edge-based) Pregel Event Folding Command Folding MapReduce (temporal) Pause/Shift/Resume Initial Data Set live graph graph snapshot graph snapshot log sequence log sequence graph snapshot graph snapshot graph snapshot Locality vertex-local vertex-local vertex-local single-vertex single-vertex vertex-local vertex-local

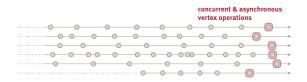


Models Supported by the CHRONOGRAPH Concept

#### Model

#### Main CHRONOGRAPH model

MapReduce (vertex-based) MapReduce (edge-based) Pregel Event Folding Command Folding MapReduce (temporal) Pause/Shift/Resume Initial Data Set live graph graph snapshot graph snapshot log sequence log sequence graph snapshot graph snapshot graph snapshot Locality vertex-local vertex-local vertex-local single-vertex single-vertex vertex-local vertex-local



Models Supported by the CHRONOGRAPH Concept

#### Model

Main CHRONOGRAPH model MapReduce (vertex-based) MapReduce (edge-based) Pregel

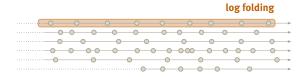
Event Folding Command Folding MapReduce (temporal) Pause/Shift/Resume Initial Data Set live graph graph snapshot graph snapshot log sequence log sequence graph snapshot graph snapshot Locality vertex-local vertex-local vertex-local single-vertex single-vertex vertex-local vertex-local



Models Supported by the CHRONOGRAPH Concept

#### Model

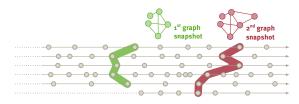
Main CHRONOGRAPH model MapReduce (vertex-based) MapReduce (edge-based) Pregel Event Folding Command Folding MapReduce (temporal) Pause/Shift/Resume Initial Data Set live graph graph snapshot graph snapshot log sequence log sequence graph snapshot graph snapshot Locality vertex-local vertex-local vertex-local single-vertex single-vertex vertex-local vertex-local



Models Supported by the CHRONOGRAPH Concept

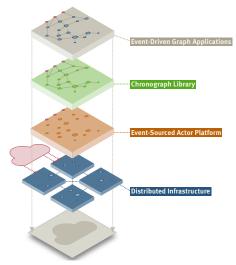
#### Model

Main CHRONOGRAPH model MapReduce (vertex-based) MapReduce (edge-based) Pregel Event Folding Command Folding MapReduce (temporal) Pause/Shift/Resume Initial Data Set live graph graph snapshot graph snapshot log sequence log sequence graph snapshot graph snapshot graph snapshot Locality vertex-local vertex-local vertex-local single-vertex single-vertex vertex-local vertex-local



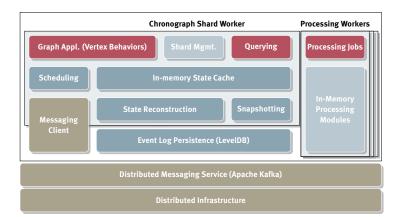
### **CHRONOGRAPH** System

#### **Conceptual Overview**



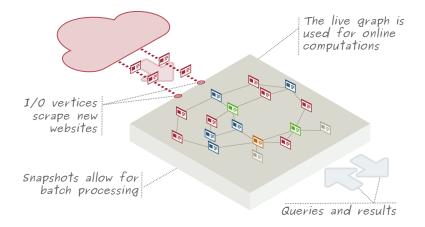
### **CHRONOGRAPH Worker Architecture**

#### Shard Worker & Processing Worker(s)



### Web Crawling with CHRONOGRAPH

**Example Application** 



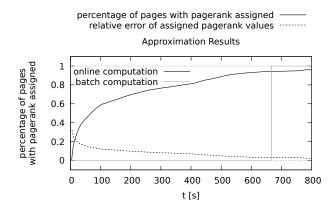
### Performance Evaluation

Scenarios and Methodology

- evaluation workloads
  - small web graph (based on a SNAP data set)
    - 60,826 vertices, 143,766 edges
  - DEBS'16 Grand challenge: stream of social graph events
    - 42,934 vertices, 1,241,381 edges
- methodology
  - repeated and isolated runs of all workloads (5x)
  - collection and descriptive analysis of measurements
  - test setup
    - four bare-metal machines in dedicated LAN (1 GigE)
    - Intel Xeon E31220 (4x3.10 GHz); 16 GB RAM; Ubuntu 14.04 LTS;
  - measurements
    - application and worker metrics
    - process and system metrics

### Performance Results: Fast vs. Exact Results

#### **Online vs. Batch Computations**

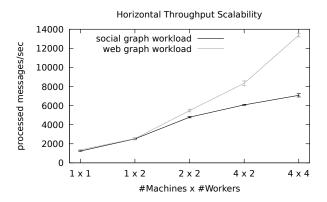


example web graph (60,826 vertices, 143,766 edges)

- BSP/Pregel PageRank algorithm (offline) on completed graph
- online algorithm on evovling graph (based on Sankaralingam et al., 2003)

### Performance Results: Scalability

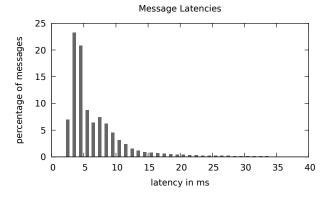
#### **Application Messages per Second**



different workload characteristics: reactive vs. reactive + active

### Performance Results: Message Latencies

#### Application-level Latencies between Vertices



- workload: social graph example; 4x4 setup
- distribution of application-level message latencies (vertex-to-vertex)
- latency statistics: mean=5.02 ms, *P*<sub>95</sub>=15.16 ms, *P*<sub>99</sub>=29.18 ms

### Performance Results: Graph Reconstructions

**Snapshotting & Reconstruction Times** 

21

|                      | Average           | SD               |
|----------------------|-------------------|------------------|
| Graph snapshotting   | 3.65 ms           | 0.80 ms          |
| Graph reconstruction | 2701.48 ms        | 64.31 ms         |
| Event restore rate   | 75728.49 events/s | 1766.01 events/s |

web graph workload (60,826 vertices)

test setup: 4 machines with 2 workers each

### **Future Work**

**Remaining Challenges & Future Directions** 

- in-depth performance analysis and optimizations
  - speed-up of worker performance
  - large-scale setups
  - history pruning and log compaction
- advanced operations on vertex event logs
  - retroactive modifications on branched logs
  - (partial) re-executions
- more real-world use cases and evaluations
  - centralized backend system for IoT applications (LoRaWAN topologies)

### **Conclusion & Take Aways**

CHRONOGRAPH: Online and Batch Processing on Event-sourced Graphs

- event-sourced graph computing
  - asynchronous, message-based computing model for vertices
  - distributed event sourcing of the entire graph evolution
  - arbitrary reconstructions on vertex and graph level
- CHRONOGRAPH prototype platform
  - JavaScript-based runtime environment for graph applications
  - support for various graph processing models
  - single platform for **online & offline computations** on graphs

#### Thanks!

Questions? Feedback?

#### Contact

WWW: <u>uulm.de/?erb</u> Mail: benjamin.erb@uni-ulm.de Twitter: @b\_erb

### Sources & Material

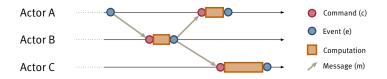
- Slide deck license
  - This work is licensed under a CC-BY-SA 4.0 license.
- Title image
  - untitled by milivanily; CCo License
- Icon sets
  - PICOL-Icons made by Melih Bilgil; licensed under CC-BY 3.0
  - Font Awesome; licensed under the SIL OFL 1.1
  - Material Design Icons by Google; licensed under CC-BY-SA 4.0

### Reference Original Publication

Benjamin Erb, Dominik Meißner, Jakob Pietron, and Frank Kargl. 2017. CHRONOGRAPH — A Distributed Processing Platform for Online and Batch Computations on Event-sourced Graphs. In *Proceedings of DEBS '17, Barcelona, Spain, June 19-23, 2017,* 10 pages. DOI: 10.1145/3093742.3093913

# **BACKUP SLIDES**

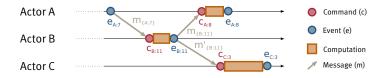
### Command Sourcing & Event Sourcing of Actors Separation of Log Entries



# Command Sourcing & Event Sourcing of Actors

#### Versioning & Causality Tracking

28



## Event Log: State Modifications as Delta Events

Event-sourced Graph Programming Model

e.g., JSON Patch (RFC 6902)

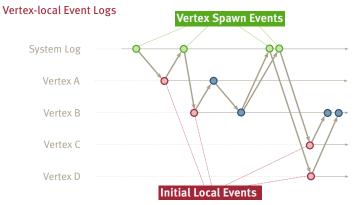
**Delta State Computation:** 

$$Event_t = \Delta(State_t, State_{t+1})$$

Left Fold of Updates:

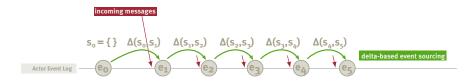
 $fold(\{\}, Event_1, \ldots, Event_t) = State_{t+1}$ 

### **Distibuted Event Sourcing**



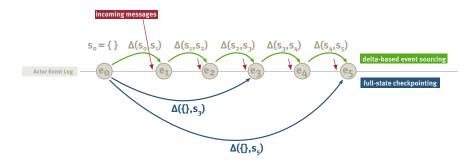
### Checkpointing

#### Speeding up Reconstruction Times



### Checkpointing

#### Speeding up Reconstruction Times



### **CHRONOGRAPH** Programming API

#### **Event-sourced Stateful Vertices**

32

```
// event-sourced vertex behavior function
function vertexBehavior(message: incoming, state:
    currentState)
    sendMessage(vertex: neighbour, message: content);
    spawnVertex(function: behavior);
    spawnEdge(vertex: target);
    removeEdge(vertex: target);
    listOutgoingEdges();
    shutdownVertex();
    return newState;
```

### Vertex-based MapReduce API

#### **Snapshot-based Batch Processing**

// user-defined map function for each vertex
function mapVertex(state: vertex)
 emit(key, value);

// user-defined reduce function
function reduce(string: key, list: values)
 return reducedResult;

### Edge-based MapReduce API

#### **Snapshot-based Batch Processing**

// user-defined map function for each edge
function mapEdge(state: vertexOut, state: vertexIn)
 emit(key, value);

// user-defined reduce function
function reduce(string: key, list: values)
 return reducedResult;

### Pregel-based API

#### **Snapshot-based Batch Processing**

```
// user-defined compute function for Pregel-based API
function compute(messages: incoming[], state: currentState)
    sendMessageTo(vertex: neighbour, message: content);
    getOutEdgeIterator();
    getSuperstep();
    voteToHalt();
    spawnVertex(function: behavior);
    spawnEdge(vertex: target);
    removeEdge(vertex: target);
    return newState;
```

### Command Folding & Event Folding APIs

Log-based Event Processing

#### **Event Folding**

// user-defined event folding function
function fold(state: old, state: new, aggregate: foldState)
 return foldState;

#### **Command Folding**

// user-defined command folding function
function fold(message: command, aggregate: foldState)
 return foldState;

### **Temporal MapReduce API**

**Snapshot-based Temporal Batch Processing** 

// user-defined temporal map function for each vertex
function mapTemporal(state: vertex@s1, state: vertex@s2)
 emit(key, value);

// user-defined reduce function
function reduce(string: key, list: values)
 return reducedResult;