

Universität Stuttgart

Institute of Parallel and Distributed Systems (IPVS) Universitätsstraße 38 D-70569 Stuttgart

Addressing TCAM Limitations of Software-Defined Networks for Content-Based Routing

Sukanya Bhowmik, M. Adnan Tariq, Alexander Balogh, Kurt Rothermel

University of Stuttgart

High Performance Publish/Subscribe Middleware

2

Publish/subscribe middleware so far ...

- Overlay network of brokers
- Routing and filtering in software
 - Expressive and accurate filtering of events in software
 - X Reduced throughput, increased latency

SDN-based publish/subscribe...

Universität Stuttgart IPVS

Publish/Subscribe Middleware on SDN

IPVS

TCAM Limitations

- TCAM is expensive and power-hungry
 - 100 times greater cost than RAM
 - 100 times greater power consumption than RAM

Cacheflow, SOSR '16

Vendors support limited no. of flow table entries in TCAM

(Typically a few thousands)

TCAM Limitations in Publish/Subscribe

- Systems may have up to millions of subscribers (content filters)
- Switches may be shared among applications
 - Fraction of flows available for pub/sub traffic
- Two possibilities
 - Drop filters/flows
 - False negatives
 - Aggregate filters/flows
 - False positives

Contributions

Expressive filtering of events despite aggregation of filters in the presence of TCAM constraint on switches

- Propose a filter aggregation algorithm that targets bandwidth efficiency in the system
- Propose methods to handle dynamics (changing subscriptions and event distribution) in the system
- Thoroughly evaluate the proposed algorithms

6

Filter Aggregation Problem

Given a set of switches with exceeded TCAM capacity (ER)

For each switch $\in ER$

- Select a set of aggregated filters that
 - Limits no. of filters to the TCAM capacity
 - Keeps overall network false positives, introduced due to aggregation, to a minimum

(minimum aggregation cost)

Filter Aggregation Algorithm

• Greedy selection based on cost per benefit

Aggregation Cost at a Merge Point

Aggregation Cost : False Positive Space

IPVS

Research Group "Distributed Systems" **Universität Stuttgart**

IPVS

Aggregation Cost at a Merge Point

Performance Evaluations

Conclusion

- Expressive filtering of events despite aggregation of filters in the presence of TCAM constraint on switches
- Propose the Filter Aggregation Algorithm
 - Pattern-based method
 - Load-based method
 - Local Aggregation Method to handle dynamics in the system

Questions?

Thank you for your attention!

Contact:

Sukanya Bhowmik Institute of Parallel and Distributed Systems (IPVS) Universität Stuttgart Universitätsstraße 38 70569 Stuttgart, Germany

- Email:sukanya.bhowmik@ipvs.uni-stuttgart.deWeb:http://www.ipvs.uni-stuttgart.de/
- Phone: +49 711 685 88245

Software-Defined Networking

http://www.d-sdn.de

Research Group "Distributed Systems"

14

Universität Stuttgart IPVS