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Web Stream Processing 
Web 

R
esults 

Join 

W
indow

s 

Web Streams Linked Data 

ü  High Latency 
ü  Rate Limits 
ü  Loosing Reactiveness 
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RDF Stream Processing (RSP) Engine 
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Motivation 

The cloth brand ACME wants to persuade influential Social 
Networks users to post commercial endorsements. 

Every minute give me the ID of the users that are mentioned on 
Social Network in the last 10 minutes whose number of followers is 
greater than 100,000. 
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REGISTER STREAM <:InfluencersToContact> AS  
CONSTRUCT {?user a :influentialUser}  
FROM NAMED WINDOW W ON S [RANGE 10m STEP 1m]  
WHERE { 

 WINDOW W {?user :hasMentions ?mentionsNumber} 
 SERVICE BKG  {?user :hasFollowers ?followerCount }  
 FILTER (?followerCount > 100,000) 

} 
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Data become stale 
if not refreshed 
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ACQUA, ACQUA.F Frameworks 
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WINDOW clause 
Stream data 

JOIN Proposer Ranker 

Maintainer 
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SERVICE clause 
ACQUA: without FILTER 

ACQUA.F: with FILTER Clause 
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ACQUA.F: 

Filter Update Policy 
RND.F 
LRU.F 
WBM.F 

 

Candidate set 

Elected set: top γ mappings 
of Candidate set 

Local Replica 

WSJ: Filter out mappings 
that are not involved in 
current evaluation 

Soheila Dehghanzadeh, et al., Approximate Continuous Query Answering over Streams and Dynamic Linked Data Sets, ICWE 2015. 
Shima Zahmatkesh, et al., When a FILTER Makes the Dierence in Continuously Answering SPARQL Queries on Streaming and 
Quasi-Static Linked Data, ICWE 2016. 
Emanuele Della Valle, et al., Taming velocity and variety simultaneously in big data with stream reasoning, DEBS 2016. 



Rankers 
•  LRU

•  Use Least-Recently Used (LRU) cache replacement algorithm 
•  The less recently a mapping have been refreshed in a query, the 

higher is its rank. 

•  Filter Update Policy 
•  For each mapping in the replica: 

•  Computes how close is the value associate to the variable of the 
mapping to the Filtering Threshold used in Filter clause. 

•  Arrange mappings in ascending order. 
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User Last Update Time LRU policy #followers Filter Update 
Alice 8 1 120 2 
Bob 10 2 30 3 

Carol 14 3 95 1 

Filtering Threshold = 100  



Rank Aggregation 

•  Fairly take into account the opinions of different 
algorithms. 

• Combine the ranking lists obtained from different 
algorithms by computing aggregated score 
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User Score 
Alice 0.8 
Bob 0.7 
Carol 0.5 
David 0.4 
Eve 0.1 

User Score 
Bob 0.9 
David 0.8 
Alice 0.7 
Eve 0.4 
Carol 0.1 

User Scoreagg 
Bob 0.8 
Alice 0.75 α = 0.5 

T = 0.5*0.8 + 0.5*0.9 = 0.85     List 1 List 2 



Rank Aggregation 

•  Fairly take into account the opinions of different 
algorithms. 

• Combine the ranking lists obtained from different 
algorithms by computing aggregated score 
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User Score 
Alice 0.8 
Bob 0.7 
Carol 0.5 
David 0.4 
Eve 0.1 

User Score 
Bob 0.9 
David 0.8 
Alice 0.7 
Eve 0.4 
Carol 0.1 

User Scoreagg 
Bob 0.8 
Alice 0.75 α = 0.5 

User Scoreagg 
Bob 0.8 
Alice 0.75 
David 0.6 

T = 0.5*0.7 + 0.5*0.8 = 0.75 List 1 List 2 



Experimental Evaluation 

• Data Sets 
•  Streaming data, and realistic background data from real data of 

Twitter  

• Query 
•  Contains WINDOW, SERVICE, and FILTER clauses 
•  Generate correct answer of the query by an Oracle 

• KPIs 
•  Measure diversity of the set generated by the query and correct 

answer 
•  Compute cummulative errors over evaluations
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Experimental Results 
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Experiment Dimension 

For high selectivity 
Filter Update Policy 
is better than WBM 
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Experiment Dimension 

For low selectivity 
WBM is better than 
Filter Update Policy  



Experimental Results 
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Conclusion 

• Problem of continuously evaluating queries over data 
stream and background data. 

•  The results of experiments show that proposed policies 
have the same accuracy of the best result achieved 
without using any assumption.  

•  They also show that the proposed policies are not 
sensitive to the value of alpha used in rank aggregation 
formula. 
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Future works 

• Broaden the class of queries  
•  Multiple filtering 
•  Filtering condition formulated as a ranking clause 

• Pushing the FILTER clause into the SERVICE clause and 
considering caching instead of local replica 

• Study the effect of different trends in the data 
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Thank you! 
Any Question? 

Using Rank Aggregation in Continuously 
Answering SPARQL Queries on Streaming 

and Quasi-static Linked Data 
 

Shima Zahmatkesh 
shima.zahmatkesh@polimi.it 
DEIB - Politecnico of Milano 
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