ACM DEBS 2017

Grand Challenge: Runtime Anomaly
Detection Method in Smart Factories using

Machine Learning on RDF Event Streams /
Joong-Hyun Choi’, Kang-Woo Lee*,

Hyungkun Jung™ and Eun-Sun Cho’

"Dept. of Computer Sci. & Eng., Chungnam Nat'l Univ.

*Electronics and Telecommunications Research Institute

2017.06.22

Outline

The 2017 Grand Challenge

Our Approaches
RDF Parser
Query Processor
Sequencer

Experimental Results
Summary

The 2017 ACM DEBS Grand Challenge

- Goal: anomaly detection of manufacturing equipment
- Both the data set and the automated evaluation platform are provided by the
HOBBIT project
- All data are provided as RDF triples

- The query has three stages: (1) Finding Clusters, (2) Training a Markov Model and (3)
Finding Anomalies

- Queries require continuously evaluated of cluster centers

Our Approach

oproach

/ RDF Parser,

Input Queue

Sequencer

RDF Parser,

- e o o o o o o e e o e o - - - - o e o o e o =

Queue

Query
Processor,

Sequencer

Query
Processor,

- Our solution has three operators
RDF Parser, Query Processor and Sequencer

- The evaluation platform provides two queues
- Input Queue, Output Queue

] Output Queue

Our Approach

/ RDF Parser,

Input Queue

RDF Parser,

Sequencer

Query
Queue| Processor,
O
O
O
Query
Queue| Processor,

Sequencer

A 4

Output Queue

RDF Parser

- Events data of this year’s challenge are provided in RDF tuples with sensor
values

- Usually, it is not easy to handle RDF tuples

<debs#ObservationGroup_0> <l40#observedCycle> <debs#Cycle_0> .
<debs#Cycle_0> <rdf#type> <I40#Cycle> .
<debs#Cycle_0> <lotCore#valueliteral> "13"A N <XML#int> .

a

\ 4

ssnchagValue

- However, the RDF stream in challenge consists of two noticeable properties

- It is represented in N-Triples
- The order of the RDF triples is strict

Example of RDF Stream in GC

Very simple, easy to parse line-by-line

AL
r ™

— <debs#ObservationGroup_0> <rdf#type> <l40#MoldingMachineObservationGroup> .
, <debs#ObservationGroup_0> <ssn#observationResultTime> <debs#Timestamp_0> .
Machine that <debs#ObservationGroup_0> <|40#machine> <Metadata#Machine_59> .
the event is <debs#ObservationGroup_0> <l40#observedCycle> <debs#Cycle 0> .
raised from = _debs#Cycle 0> <rdfétype> <140#Cycle> .
<debs#Cycle_0> <lotCore#valueliteral> "13"A " <XML#int> .
<debs#Timestamp_0> <rdf#type> <lotCore#Timestamp> .

=» These features allow us to understand RDF streams

without manipulating conventional complex graph structures
<debs#Observation:O> <ssn#observedProperty> <|\/Ietadata#_5§_4> :
Sensor values — <debs#Output_0> <rdf#type> <ssn#SensorOutput> .
<debs#Output_0> <ssn#hasValue> <debs#Value_0> .
<debs#Value_0> <rdf#type> <I40#NumberValue> .

<debs#Value 0> <lotCore#valueliteral> "9433.11"A A <XML#double> .

Experimental on various RDF Parsing Methods
- The RDF data have a size of 7.9GB and translates to 50,000 events

The Jena-based methods
take longer than
others because of its
generality

\

Total processing Ratio relative to
time(s) line-by-line parser
Jena SPARQL 234 13.2
Jena RDF API 131 7.4
Java Pattern Matcher 56 3.1
Line-by-line Parser (ours) 17 1
r S D

.

The best performance, dedicated solution
It's thought to be approve for the sensor event stream

J

Our Approach

RDF Parser;,

;

Input Queue

RDF Parser,

Sequencer

Query
Queue| Processor,

Query

Queue| Processor,

Sequencer

A 4

Output Queue

Query Processor (1/2)

- Goal: to detect abnormal manufacturing equipment

- The Query Processor has three stages
- Anomalies of different sensors can be found simultaneously

New
Event

Machine 1
Event Stage 1 Stage 2 Stage 3
Window u | |
I I
R 1F-——" R -
—1,| Sgnsgn_ ___1) | Training [_____"_ > | Finding
| Finding MEIR _'| Anomaly
Latest W L_Clusters K HChain |\ yransition
events clusters probability

i

Abnormal

| ﬁva

Query Processor (2/2)

- Goal: to detect abnormal manufacturing equipment

- The parameter W of a query is the main factor for our system performance
- It's related to the number of elements used in clustering and training Markov chain

=» Cluster calculation entails tremendous overhead unless the number of elements are
not sufficiently small

Event

!

Machine 1
Event Stage 1 Stage 2 Stage 3
Window | | | |
I |
J 1S 10~ ~7" ining [--""~ N
= gnsQ[_ ___4l | Training [_____"_ L Finding
| Finding MEIEY L'l Anomaly
New Latest W L_Clusters K —_Chain N transition
events clusters probability

Abnormal

| ﬁva

Finding Clusters

- This year’s challenge uses one-dimensional data for clustering

- There was an optimal K-means clustering method* for one-
dimensional data

- However, we could not use this method in this year’s granad
challenge

- They did not allow manual assignments of initial centroids

- They did not allow us to follow our own conflict resolution principle when a single
value matches multiple clusters

*Haizhou Wang and Mingzhou Song. 2011. Ckmeans. 1d. dp: optimal k-means clustering in one dimension by dynamic
programming. The R journal 3, 2 (2011), 29.

A Revised K-Means Method (1/2)

- |[dea: Matching only selected set of clusters in assignment phase

- Initial centroids are sorted

- Recalculating the distances between a given value and the centroids of selected
clusters

A Revised K-Means Method (2/2)

- Example
- K: 5, Values: 30, 20, 10, 42, 50, 36, 45, 45, 45

Initial Centroid Cluster Values Updated Centroid

C, 10 10 C, 10

C, 20 20 C, 20
—_— s

C, 30 30 C, 30

C, 42 36,42,45,45,45 C, 42.6

C. 50 50 Ce 50

A Revised K-Means Method (2/2)

- Example
- K: 5, Values: 30, 20, 10, 42, 50, 36, 45, 45, 45

- Recalculating distance of 36 value
- (1) Calculating distance of previously assigned cluster
- (2) Calculating distance of two nearest clusters from previously clusters
- (3) Calculating distance of clusters in a direction with a small distance in (2)

Initial Centroid Cluster Values Updated Centroid "~ -

| |
C, 10 10 C, 10 IW o % W :
c, 20 20 | [& 20 | |
¢, 30 30 , 30 1 (3) %(2) |
C, 42 36,42,45,45,45 C, 42.6 | |
| 36 |

C. 50 50 Cs 50 b e e e

Our Approach

Queue| Processor,

[[I I
| I ' |
[[I I
! . Query | !
/RDF rarser i . | Queue| Processor, i :
| |
I I I I
o | , o) :

| - >

Input Queue o il >eduEncer < gl >cduencer | Output Queue

I I
[I
Query : :
| |
I I
[I

i |
RDF Parser, [
| |
l :

D T T e —
o o o o o o o o o

Sequencer

- Goal: To keep the original order of events,
- We assign a sequence number to each event, and keep track and manage them

New)
Events Tagging
Sequence
Numbers

: Processed
Concurrent Reordering Events Events

Processing with on Sequence
Multiple Numbers

Operators

(1) (2) (3)

- To improve the throughput of our system,
- We simply let multiple RDF Parsers and multiple Query Processors run concurrently

Experiments

Experiments

- The RDF data we used consist of 47 million triples and translated

to 50,000 events

- Ubuntu 16.04.2 LTS, Intel Core i7-6900K, 96GB Memory, OpenJDK Runtime
Environment (build 1.8.0_131).

- Test with three level of concurrency

- No Queue Mode: events cannot be processed at the same time

- Single Queue Mode: task parallelism (pipelining). RDF parser and the Query
Processor can run concurrently

- Multiple Queue Mode: data parallel processing. Event from different manufacturing
equipment executed concurrently.

Experiments: Total Execution Times

- The processing time decreases as the queue usage increases

- No Queue Mode and Single Queue Mode tests took 2.5 times and 1.4 times longer,
respectively, compared to the Multiple Queue Mode

_. 50000
2 R
g 40000 - S
= 30000
S —0 ON———=TTTNN
= 20000 Cﬁ X NN
O o —- R
¥ 10000
()
£ 0
O
- 10 20 40 60

Window Size(sec)

--No Queue -o-Single Queue -o-Multiple Queue

Experiments: Portion of Event Processing Time

- As the value Window size increases, the portion of other
computations increase noticeably compared to the parsing
operation

- The cost of the query processing and the context-switch of the CPU increases
- CPU idle time for each event also increases

100%

80% MW RDF Parsing
o

B SequeceCheck

60% I I B Anomaly Detection - Cluster
40% Anomaly Detection - Markov
Anomaly Detection - Window
20% . B Anomaly Detection - Etc
0% W SequenceCheck?
10 20 40 60

Window Size(sec)

Experiments: A Revised K-Means Method (1/2)

The total execution time of the

standard algorithm grows more 30000
Sharp|y AZSOOOO
TE/ZOOOOO
Our algorithm is more scalable
= 100000

s
—
50000

0
10 100 200 300 400 500

Window Size(sec)

—_— e =—re d

Experiments: A Revised K-Means Method (2/2)

Standard algorithm

|t ta keS O(f X k X l) Algorithm 2: Our revised algorithm

k.centroids, n: values, (. repetitions 1 Select K points as the initial centroids

[2 Sort the initial centroids
\ repeat

n _—+—t¥foreach point in the All Points do
)) 50 _w»Dprew — distance between point and previously assigned cluster
O U r- re\/l Sed a | O ch m k / Dieft.right < distance between point and nearest two clusters from previously assigned cluster
g 7 if Dfefa‘ < Dprew then
| k O . C 5 > | C pew search cluster with mininum distance on the left
t ta es (Nn X C X |() 9 else if D, p; < Dprer then
10 | Chew search cluster with mininum distance on the right
c=3 11 else
12 |_ Cnew<— previously assigned cluster
13 | assign point to the Cpe,, cluster
14 Recompute the centroid of each cluster.

until The centroids don't change

Summary

- Our solution
- RDF triples are processed efficiently by our line-by-line parser
- A revised k-clustering algorithm
- High degree of concurrency in continuous query processing

http://www.debs2
017.org/fgcfavera -467091407 ol 214688000 64232000 49928000 533224704 -398817472 -1

gelatencyManos

http://www.debs2
017.org/gc/throu 2220683.834653 1171138.520880 | 2219930.691811 | 1483408.896644 1499040.536164 1411076.946953 2004779.604154 1487190.370545

ghputBytesPerSe 9307386 7433095 7105961 2481615 2694773 6391971 2209009 8182376

cond

‘ Thank you!!

eclipse@cnu.ac.kr

PLAS: Programming Languages and System Lab
5th Engineering Building, Chungnam National University, Daejeon, Republic of Korea.

	Grand Challenge: Runtime Anomaly Detection Method in Smart Factories using Machine Learning on RDF Event Streams
	Outline
	The 2017 ACM DEBS Grand Challenge
	Our Approach
	Our Approach
	Our Approach
	RDF Parser
	Example of RDF Stream in GC
	Experimental on various RDF Parsing Methods
	Our Approach
	Query Processor (1/2)
	Query Processor (2/2)
	Finding Clusters
	A Revised K-Means Method (1/2)
	A Revised K-Means Method (2/2)
	A Revised K-Means Method (2/2)
	Our Approach
	Sequencer
	Experiments
	Experiments
	Experiments: Total Execution Times
	Experiments: Portion of Event Processing Time
	Experiments: A Revised K-Means Method (1/2)
	Experiments: A Revised K-Means Method (2/2)
	Summary
	슬라이드 번호 26

