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The 2017 ACM DEBS Grand Challenge

- Goal: anomaly detection of manufacturing equipment
- Both the data set and the automated evaluation platform are provided by the
HOBBIT project
- All data are provided as RDF triples

- The query has three stages: (1) Finding Clusters, (2) Training a Markov Model and (3)
Finding Anomalies

- Queries require continuously evaluated of cluster centers



Our Approach
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- Our solution has three operators
RDF Parser, Query Processor and Sequencer

- The evaluation platform provides two queues
- Input Queue, Output Queue
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RDF Parser

- Events data of this year’s challenge are provided in RDF tuples with sensor
values

- Usually, it is not easy to handle RDF tuples

<debs#ObservationGroup_0> <l40#observedCycle> <debs#Cycle_0> .
<debs#Cycle_0> <rdf#type> <I40#Cycle> .
<debs#Cycle_0> <lotCore#valueliteral> "13"A N <XML#int> .

a
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- However, the RDF stream in challenge consists of two noticeable properties

- It is represented in N-Triples
- The order of the RDF triples is strict



Example of RDF Stream in GC

Very simple, easy to parse line-by-line

AL
r ™

— <debs#ObservationGroup_0> <rdf#type> <l40#MoldingMachineObservationGroup> .
, <debs#ObservationGroup_0> <ssn#observationResultTime> <debs#Timestamp_0> .
Machine that <debs#ObservationGroup_0> <|40#machine> <Metadata#Machine_59> .
the event is <debs#ObservationGroup_0> <l40#observedCycle> <debs#Cycle 0> .
raised from = _debs#Cycle 0> <rdfétype> <140#Cycle> .
<debs#Cycle_0> <lotCore#valueliteral> "13"A " <XML#int> .
<debs#Timestamp_0> <rdf#type> <lotCore#Timestamp> .

=» These features allow us to understand RDF streams

without manipulating conventional complex graph structures
<debs#Observation:O> <ssn#observedProperty> <|\/Ietadata#_5§_4> :
Sensor values — <debs#Output_0> <rdf#type> <ssn#SensorOutput> .
<debs#Output_0> <ssn#hasValue> <debs#Value_0> .
<debs#Value_0> <rdf#type> <I40#NumberValue> .

<debs#Value 0> <lotCore#valueliteral> "9433.11"A A <XML#double> .




Experimental on various RDF Parsing Methods
- The RDF data have a size of 7.9GB and translates to 50,000 events

The Jena-based methods
take longer than
others because of its
generality

\

Total processing Ratio relative to
time(s) line-by-line parser
Jena SPARQL 234 13.2
Jena RDF API 131 7.4
Java Pattern Matcher 56 3.1
Line-by-line Parser (ours) 17 1
r S D

.

The best performance, dedicated solution
It's thought to be approve for the sensor event stream

J
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Query Processor (1/2)

- Goal: to detect abnormal manufacturing equipment

- The Query Processor has three stages
- Anomalies of different sensors can be found simultaneously

New
Event

Machine 1
Event Stage 1 Stage 2 Stage 3
Window u | |
I I
R 1F-——" R -
—1,| Sgnsgn_ ___1) | Training [_____"_ > | Finding
| Finding MEIR _'| Anomaly
Latest W L_Clusters K HChain |\ yransition
events clusters probability

i

Abnormal

| ﬁva




Query Processor (2/2)

- Goal: to detect abnormal manufacturing equipment

- The parameter W of a query is the main factor for our system performance
- It's related to the number of elements used in clustering and training Markov chain

=» Cluster calculation entails tremendous overhead unless the number of elements are
not sufficiently small

Event
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Finding Clusters

- This year’s challenge uses one-dimensional data for clustering

- There was an optimal K-means clustering method* for one-
dimensional data

- However, we could not use this method in this year’s granad
challenge

- They did not allow manual assignments of initial centroids

- They did not allow us to follow our own conflict resolution principle when a single
value matches multiple clusters

*Haizhou Wang and Mingzhou Song. 2011. Ckmeans. 1d. dp: optimal k-means clustering in one dimension by dynamic
programming. The R journal 3, 2 (2011), 29.



A Revised K-Means Method (1/2)

- |[dea: Matching only selected set of clusters in assignment phase

- Initial centroids are sorted

- Recalculating the distances between a given value and the centroids of selected
clusters



A Revised K-Means Method (2/2)

- Example
- K: 5, Values: 30, 20, 10, 42, 50, 36, 45, 45, 45

Initial Centroid Cluster Values Updated Centroid

C, 10 10 C, 10

C, 20 20 C, 20
—_— s

C, 30 30 C, 30

C, 42 36,42,45,45,45 C, 42.6

C. 50 50 Ce 50



A Revised K-Means Method (2/2)

- Example
- K: 5, Values: 30, 20, 10, 42, 50, 36, 45, 45, 45

- Recalculating distance of 36 value
- (1) Calculating distance of previously assigned cluster
- (2) Calculating distance of two nearest clusters from previously clusters
- (3) Calculating distance of clusters in a direction with a small distance in (2)

Initial Centroid Cluster Values Updated Centroid "~ -

| |
C, 10 10 C, 10 IW o % W :
c, 20 20 | [ & 20 | |
¢, 30 30 , 30 1 (3) %(2) |
C, 42 36,42,45,45,45 C, 42.6 | |
| 36 |

C. 50 50 Cs 50 b e e e



Our Approach
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Sequencer

- Goal: To keep the original order of events,
- We assign a sequence number to each event, and keep track and manage them

New )
Events Tagging
Sequence
Numbers

: Processed
Concurrent Reordering Events Events

Processing with on Sequence
Multiple Numbers

Operators

(1) (2) (3)

- To improve the throughput of our system,
- We simply let multiple RDF Parsers and multiple Query Processors run concurrently



Experiments



Experiments

- The RDF data we used consist of 47 million triples and translated

to 50,000 events

- Ubuntu 16.04.2 LTS, Intel Core i7-6900K, 96GB Memory, OpenJDK Runtime
Environment (build 1.8.0_131).

- Test with three level of concurrency

- No Queue Mode: events cannot be processed at the same time

- Single Queue Mode: task parallelism (pipelining). RDF parser and the Query
Processor can run concurrently

- Multiple Queue Mode: data parallel processing. Event from different manufacturing
equipment executed concurrently.



Experiments: Total Execution Times

- The processing time decreases as the queue usage increases

- No Queue Mode and Single Queue Mode tests took 2.5 times and 1.4 times longer,
respectively, compared to the Multiple Queue Mode
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Experiments: Portion of Event Processing Time

- As the value Window size increases, the portion of other
computations increase noticeably compared to the parsing
operation

- The cost of the query processing and the context-switch of the CPU increases
- CPU idle time for each event also increases
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Experiments: A Revised K-Means Method (1/2)

The total execution time of the

standard algorithm grows more 30000
Sharp|y AZSOOOO
TE/ZOOOOO
Our algorithm is more scalable
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Experiments: A Revised K-Means Method (2/2)

Standard algorithm

|t ta keS O( f X k X l) Algorithm 2: Our revised algorithm

k.centroids, n: values, (. repetitions 1 Select K points as the initial centroids

[ 2 Sort the initial centroids
\ repeat

n _—+—t¥foreach point in the All Points do
) ) 50 _w»Dprew — distance between point and previously assigned cluster
O U r- re\/l Sed a | O ch m k / Dieft.right < distance between point and nearest two clusters from previously assigned cluster
g 7 if Dfefa‘ < Dprew then
| k O . C 5 > | C pew search cluster with mininum distance on the left
t ta es ( Nn X C X |( ) 9 else if D, p; < Dprer then
10 | Chew search cluster with mininum distance on the right
c=3 11 else
12 |_ Cnew<— previously assigned cluster
13 | assign point to the Cpe,, cluster
14 Recompute the centroid of each cluster.

until The centroids don't change




Summary

- Our solution
- RDF triples are processed efficiently by our line-by-line parser
- A revised k-clustering algorithm
- High degree of concurrency in continuous query processing

http://www.debs2
017.org/fgcfavera  -467091407 ol 214688000 64232000 49928000 533224704 -398817472 -1

gelatencyManos

http://www.debs2
017.org/gc/throu 2220683.834653  1171138.520880 | 2219930.691811 | 1483408.896644  1499040.536164 1411076.946953  2004779.604154  1487190.370545

ghputBytesPerSe 9307386 7433095 7105961 2481615 2694773 6391971 2209009 8182376

cond




‘ Thank you!!

eclipse@cnu.ac.kr

PLAS: Programming Languages and System Lab
5th Engineering Building, Chungnam National University, Daejeon, Republic of Korea.
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