Grand Challenge: Runtime Anomaly Detection Method in Smart Factories using Machine Learning on RDF Event Streams

<u>Joong-Hyun Choi</u>*, Kang-Woo Lee+, Hyungkun Jung* and Eun-Sun Cho*

*Dept. of Computer Sci. & Eng., Chungnam Nat'l Univ. *Electronics and Telecommunications Research Institute

2017.06.22

Outline

The 2017 Grand Challenge

Our Approaches

RDF Parser

Query Processor

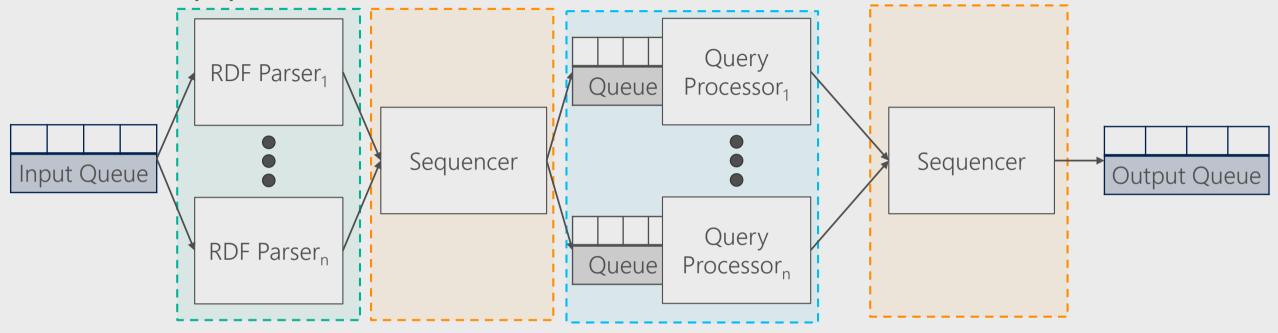
Sequencer

Experimental Results

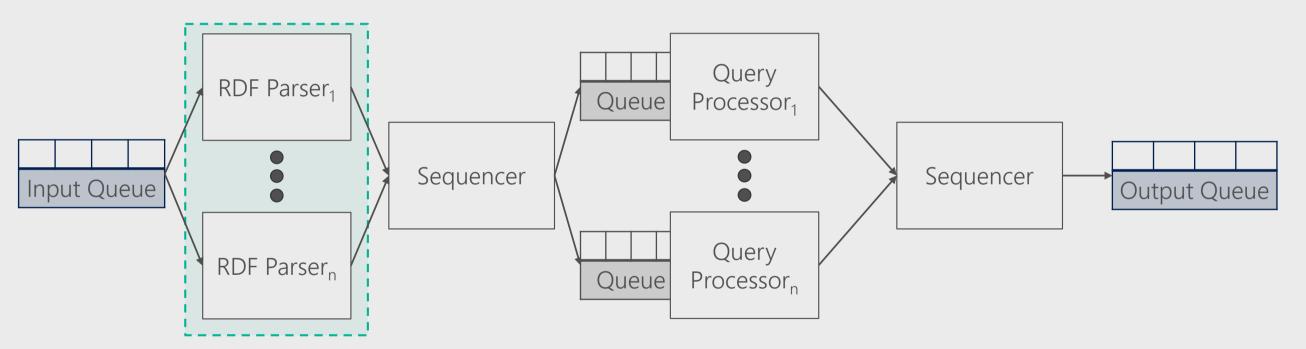
Summary

The 2017 ACM DEBS Grand Challenge

- · Goal: anomaly detection of manufacturing equipment
 - · Both the data set and the automated evaluation platform are provided by the HOBBIT project
 - · All data are provided as RDF triples
 - The query has three stages: (1) Finding Clusters, (2) Training a Markov Model and (3) Finding Anomalies
 - Queries require continuously evaluated of cluster centers

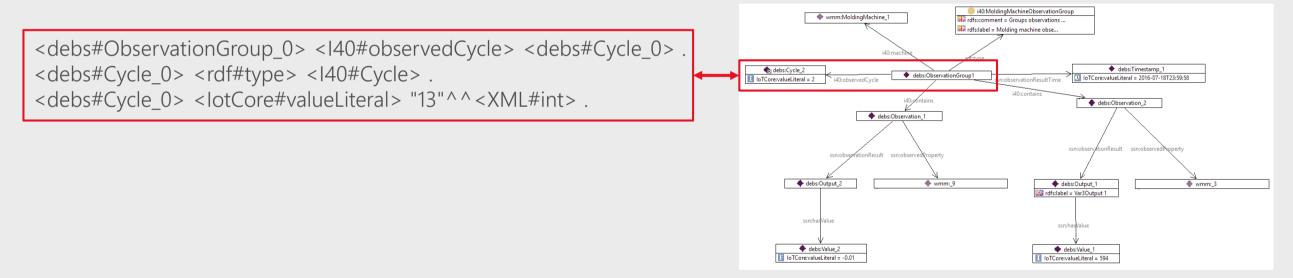


- Our solution has three operators
 - RDF Parser, Query Processor and Sequencer
- The evaluation platform provides two queues
 - · Input Queue, Output Queue



RDF Parser

- Events data of this year's challenge are provided in RDF tuples with sensor values
- Usually, it is not easy to handle RDF tuples



- However, the RDF stream in challenge consists of two noticeable properties
 - It is represented in N-Triples
 - The order of the RDF triples is strict

Example of RDF Stream in GC

Very simple, easy to parse line-by-line

```
Machine that
the event is
raised from
```

→ These features allow us to understand RDF streams without manipulating conventional complex graph structures

```
Sensor values
```

```
<debs#Observation_0> <ssn#observedProperty> <Metadata#_59_4> .
  <debs#Output_0> <rdf#type> <ssn#SensorOutput> .
  <debs#Output_0> <ssn#hasValue> <debs#Value_0> .
  <debs#Value_0> <rdf#type> <I40#NumberValue> .
  <debs#Value_0> <lotCore#valueLiteral> "9433.11"^^<XML#double> .
```

ne> .

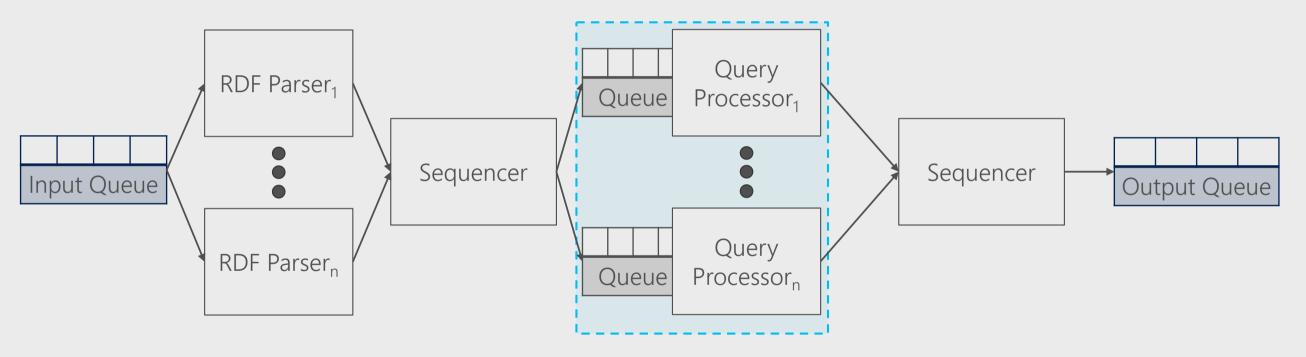
Experimental on various RDF Parsing Methods

The RDF data have a size of 7.9GB and translates to 50,000 events

	Total processing time(s)	Ratio relative to line-by-line parser		
Jena SPARQL	234	13.2		
Jena RDF API	131	7.4		
Java Pattern Matcher	56	3.1		
Line-by-line Parser (ours)	17	1		

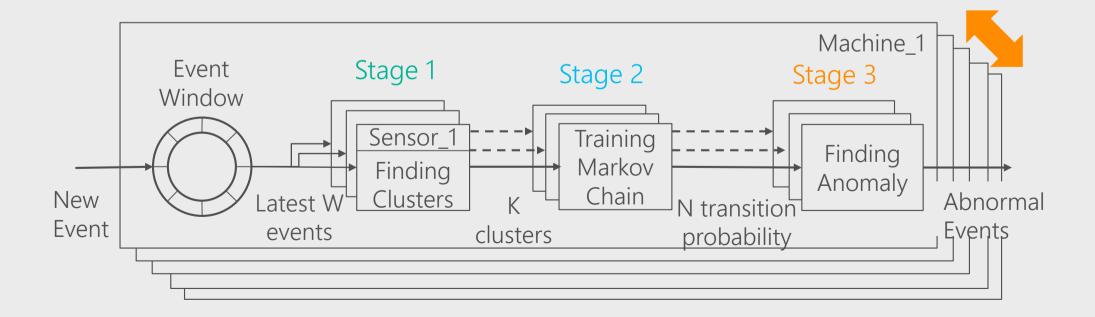
The Jena-based methods take longer than others because of its generality

The best performance, dedicated solution It's thought to be approve for the sensor event stream



Query Processor (1/2)

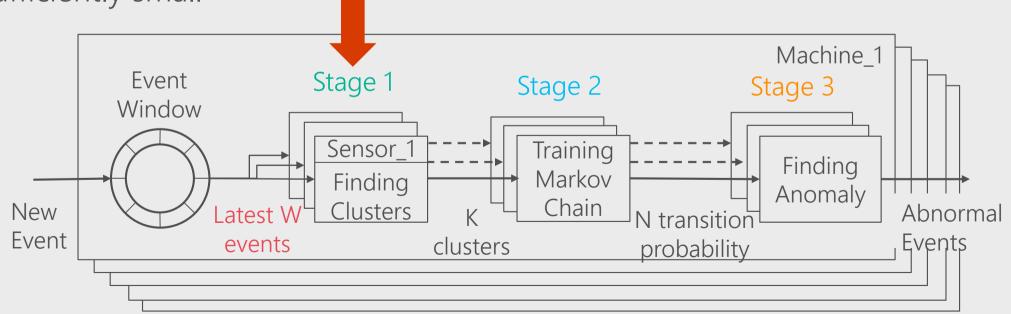
- · Goal: to detect abnormal manufacturing equipment
 - The Query Processor has three stages
 - Anomalies of different sensors can be found simultaneously



Query Processor (2/2)

- · Goal: to detect abnormal manufacturing equipment
 - · The parameter W of a query is the main factor for our system performance
 - · It's related to the number of elements used in clustering and training Markov chain

→ Cluster calculation entails tremendous overhead unless the number of elements are not sufficiently small



Finding Clusters

- · This year's challenge uses one-dimensional data for clustering
- There was an optimal K-means clustering method* for onedimensional data
- · However, we could not use this method in this year's grand challenge
 - · They did not allow manual assignments of initial centroids
 - · They did not allow us to follow our own conflict resolution principle when a single value matches multiple clusters

^{*}Haizhou Wang and Mingzhou Song. 2011. Ckmeans. 1d. dp: optimal k-means clustering in one dimension by dynamic programming. The R journal 3, 2 (2011), 29.

A Revised K-Means Method (1/2)

- · Idea: Matching only selected set of clusters in assignment phase
 - · Initial centroids are sorted
 - Recalculating the distances between a given value and the centroids of selected clusters

A Revised K-Means Method (2/2)

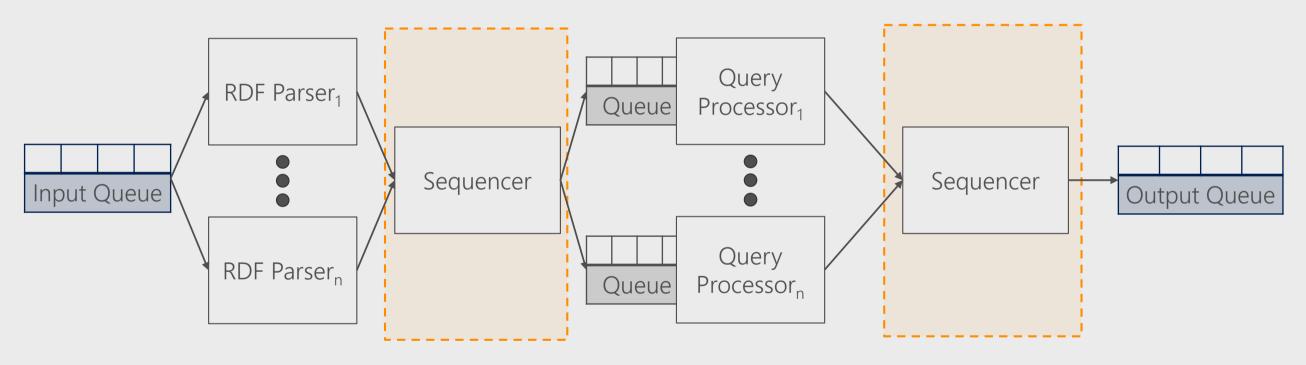
- Example
 - · K: 5, Values: 30, 20, 10, 42, 50, 36, 45, 45, 45

Initial C	entroid	Cluster Values	Updated Centroid		
C_1	10	10	C_1	10	
C_2	20	20	C_2	20	
C_3	30	30	C_3	30	
C_4	42	36,42,45,45,45	C_4	42.6	
C ₅	50	50	C ₅	50	

A Revised K-Means Method (2/2)

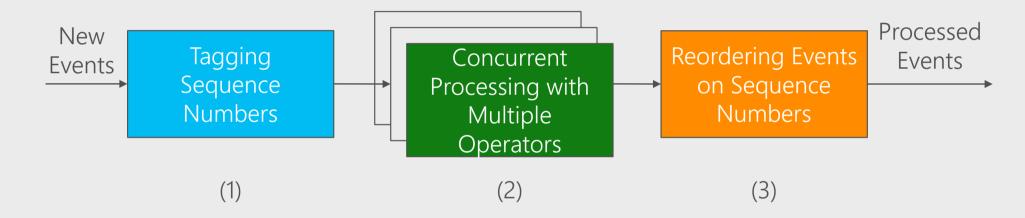
- Example
 - · K: 5, Values: 30, 20, 10, 42, 50, 36, 45, 45, 45
 - Recalculating distance of 36 value
 - (1) Calculating distance of previously assigned cluster
 - (2) Calculating distance of two nearest clusters from previously clusters
 - (3) Calculating distance of clusters in a direction with a small distance in (2)

Initial Centroid		Cluster Values		Updated Centroid					
	C_1	10	10		C_1	10	$\begin{pmatrix} c_1 \\ 10 \end{pmatrix} \begin{pmatrix} c_2 \\ 20 \end{pmatrix} \begin{pmatrix} c_3 \\ 30 \end{pmatrix} \begin{pmatrix} c_4 \\ 42.6 \end{pmatrix} \begin{pmatrix} c_5 \\ 50 \end{pmatrix}$		
	C_2	20	20		C_2	20	10 20 30 42.0 30		
	C_3	30	30		C_3	30	(3) (2) (1) (2)		
	C_4	42	36,42,45,45,45		C_4	42.6	26		
	C_{5}	50	50		C ₅	50	36		



Sequencer

- Goal: To keep the original order of events,
 - · We assign a sequence number to each event, and keep track and manage them



- To improve the throughput of our system,
 - · We simply let multiple RDF Parsers and multiple Query Processors run concurrently

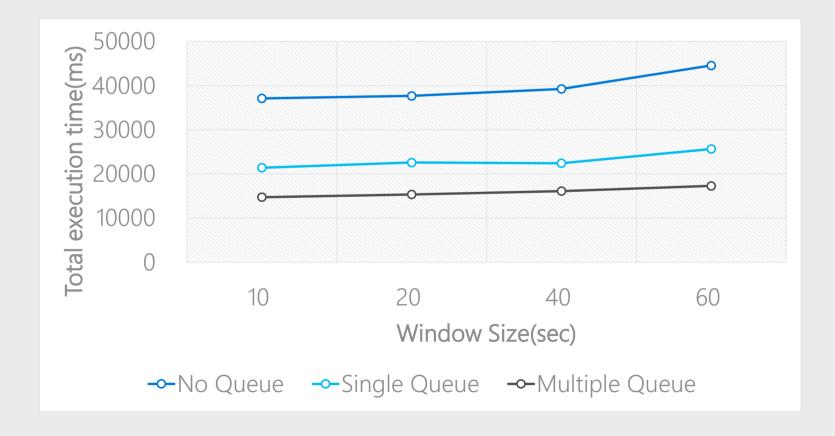
Experiments

Experiments

- The RDF data we used consist of 47 million triples and translated to 50,000 events
 - · Ubuntu 16.04.2 LTS, Intel Core i7-6900K, 96GB Memory, OpenJDK Runtime Environment (build 1.8.0_131).
- Test with three level of concurrency
 - · No Queue Mode: events cannot be processed at the same time
 - · Single Queue Mode: task parallelism (pipelining). RDF parser and the Query Processor can run concurrently
 - Multiple Queue Mode: data parallel processing. Event from different manufacturing equipment executed concurrently.

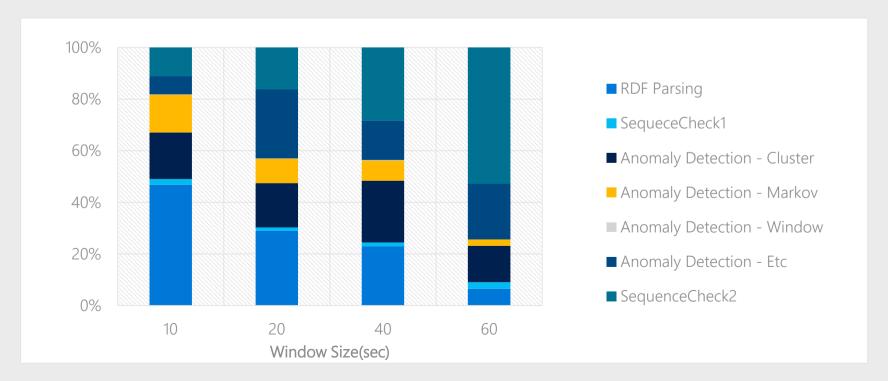
Experiments: Total Execution Times

- · The processing time decreases as the queue usage increases
 - No Queue Mode and Single Queue Mode tests took 2.5 times and 1.4 times longer, respectively, compared to the Multiple Queue Mode



Experiments: Portion of Event Processing Time

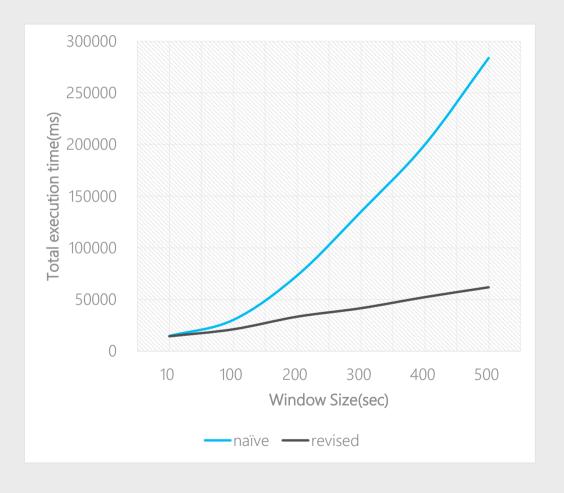
- As the value Window size increases, the portion of other computations increase noticeably compared to the parsing operation
 - · The cost of the query processing and the context-switch of the CPU increases
 - · CPU idle time for each event also increases



Experiments: A Revised K-Means Method (1/2)

The total execution time of the standard algorithm grows more sharply

Our algorithm is more scalable



Experiments: A Revised K-Means Method (2/2)

Standard algorithm It takes $O(n \times k \times i)$

k:centroids, *n*: values, *i*: repetitions

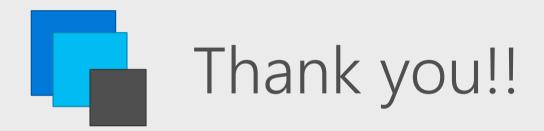
Our revised algorithm It takes $O(n \times c \times i)$

```
Algorithm 2: Our revised algorithm
 Select K points as the initial centroids
 2 Sort the initial centroids
  repeat
     →foreach point in the All Points do
         D<sub>prev</sub> ← distance between point and previously assigned cluster
           D_{left,right} \leftarrow distance between point and nearest two clusters from previously assigned cluster
           if D_{left} < D_{prev} then
               C_{new} \leftarrow search cluster with minimum distance on the left
           else if D_{riaht} < D_{prev} then
               C_{new} \leftarrow search cluster with minimum distance on the right
           else
             C_{new} \leftarrow previously assigned cluster
12
           assign point to the C_{new} cluster
       Recompute the centroid of each cluster.
   until The centroids don't change
```

Summary

- Our solution
 - · RDF triples are processed efficiently by our line-by-line parser
 - · A revised k-clustering algorithm
 - · High degree of concurrency in continuous query processing

	· ·							
http://www.debs2 017.org/gc/avera geLatencyNanos	-467091407	-1	214688000	64232000	49928000	533224704	-398817472	-1
http://www.debs2 017.org/gc/throu ghputBytesPerSe cond	2220683.834653 9307386	1171138.529889 7433095	2219930.691811 7105961	1483408.896644 2481615	1499940.536164 5654775	1411076.946953 6351971	2004779.604154 5209009	1487190.370545 8182376



eclipse@cnu.ac.kr