
1 © Nokia 2017

Kafka versus

RabbitMQ

A comparative study of two industry reference publish/subscribe implementations

Philippe Dobbelaere, Kyumars Sheykh Esmaili

Nokia Bell Labs Antwerp, Belgium

2 © Nokia 2017

• RabbitMQ and Kafka

architecture

• broker KPIs

• experimental validation

• use cases, determination table

3 © Nokia 2017

pub/sub paradigm for scalability and loose coupling in distributed systems

 decoupling of

 Entities: publishers and consumers do not need to be aware of each other.

 Time: interacting parties do not need to be actively participating in the interaction, or even

stronger, switched on, at the same time.

 Synchronization: asynchronous interaction between producers/consumers and broker, allowing

maximum usage of processor resources at producers and consumers alike

 routing logic (a.k.a subscription model)

decides if and where a packet from a producer will end up at a consumer

 Kafka ecosystem extends beyond broker

 maybe the extra functionality fit's your platform requirements, maybe it doesn't.

 RabbitMQ is just the broker.

Scope

searching a broker function for our WorldWideStreams IoT platform

4 © Nokia 2017

AMQP - Advanced Message Queuing Protocol

 a protocol for asynchronous pub/sub messaging
stringent performance, scalability and reliability requirements from the finance community.

RabbitMQ goes beyond AMQP

 batching efficiency and transactional capabilities highly increased

by more flexible publisher acknowledge

 flow control mechanism to enhance system stability

 queue insertion / extraction code is optimised for small queues in DRAM

assumption is that consumers can follow the production rate

RabbitMQ builds on top of Erlang/OpenTelecomPlatform

 exploiting the erlang actor model for IPC and OTP HA features

RabbitMQ

design principles

5 © Nokia 2017

RabbitMQ architectural components

channel

binding

channel

“a.b.c” topic

[{key1, msg1}, {key2, msg2},…]

“a.b.*” topic

“a.#” topic

(N)ack (N)ack

6 © Nokia 2017

 Kafka tries to approximate a linearly accessed disk based append log

 optimisations:

 message batching

 OS page cache, linear write disk access, cached read or mainly linear read disk

access

 The Kafka design only covers half of what a pub/sub system typically covers -

the other half is implemented in consumer libraries.

 Kafka does not remove messages on read but with a cleanup process.

Consumers can easily replay messages based on the position pointer. Cleanup is

triggered by time or log size.

 Kafka relies on Zookeeper for state management - later versions use Zookeeper

only for less time critical tasks

Kafka design principles

7 © Nokia 2017

Kafka architectural components

8 © Nokia 2017

• RabbitMQ and Kafka

architecture

• broker Key Performance

Indicators

• experimental validation

• use cases, determination table

9 © Nokia 2017

correctness

availibility

 RMQ = clusters to replicate configuration + mirrorred queues to replicate messages

 Kafka = clusters + replication requirements on Zookeeper

transactions

 AMQP transactions are not very interesting from a performance point of view

 RabbitMQ has improved transactional behaviour (reject on batches)

but atomicity is not guaranteed when a node crashes and restarts

 Kafka has transactions on the roadmap

broker KPIs - correctness, availibility, transactions

at most once at least once

no order - single RabbitMQ node, fsync per message

single Kafka node, fsync per message on demand at the expense of throughput.

cluster of Kafka nodes can avoid fsync at the expense of quorum+network latency.

partitioned

order

fastest mode for RabbitMQ

(producer channel scope)

and Kafka (partition scope)

RabbitMQ does reordering internally

Kafka producers can only have a single produce request outstanding to conserve

inter-batch ordering, which will impact throughput even more

10 © Nokia 2017

levels of scalability

Q
ch

ch

RabbitMQ node

ch

Q
ch

RabbitMQ node

RabbitMQ cluster

federation

RabbitMQ

consumer
Q

ch

node

RabbitMQ

producer

ch

load balancer

node

only if

topic does not fit on 1 node

breaks ordering

p
p

p

Kafka node

Kafka

producer

Kafka

consumer

group

ZK ZK ZK
Kafka cluster

p
p

p

Kafka node

key

hash

breaks ordering

OS

cache

11 © Nokia 2017

 Kafka

 long term message storage

 but: no way to survive the timeout!

 message replay

 log compaction

 for change feeds that are expressed as

updates to keys,

Kafka can retain only the last update ,

for all the keys

other features

 RabbitMQ

 STOMP, MQTT

 federated exchange, shovel

 diskless use

 time-to-live

 builtin management and monitoring

12 © Nokia 2017

• RabbitMQ and Kafka

architecture

• broker KPIs

• experimental validation

• use cases, determination table

13 © Nokia 2017

 Linux server

 24 cores (Intel Xeon X5660 @ 2.80GHz) and 12GB of DRAM running a 3.11 kernel.

 hard disk was a WD1003FBYX-01Y7B0 running at 7200 rpm.

 tooling up

 every single experiment logged

 memory and cycle consumption recorded

 warm-up time, then stats taken

 column based DB (CSV)

 easy "upgrade" of results when testbench gets more complex

 homebrewn data browser

 gnuplot backend

experimental setup

14 © Nokia 2017

latency comparison

RabbitMQ latency results are optimal if the broker is

allowed to have outstanding unconfirmed publishes

When RabbitMQ is running close to maximum load (an

exceptional setting), the broker will start to write packets

to disk to free up memory it needs for computation,

effectively meaning the latency figures will rapidly

deteriorate

In case of Kafka, when consumers are slow

(here: 30%), packets will have to be transferred from

disk to cache before a read completes, which will

significantly impact latency

Kafka introduces more uncertainty (P99.9 but no max...)

15 © Nokia 2017

RabbitMQ throughput in MegaBytesPerSecond or PacketsPerSecond

impact of configuration/message characteristics

optimal if the broker is configured

to allow an unlimited number of

unconfirmed publishes

(confirm == -1)

(confirm == 10) 50% drop

replication 50% drop

16 © Nokia 2017

Kafka throughput in MegaBytesPerSecond or PacketsPerSecond

impact of recordsize

17 © Nokia 2017

Kafka throughput

impact of topic count / replication per node (fixed recordsize)

at least once mode (acks == -1)

 50% to 75% drop

compared to the

best effort scenario

(acks == 0).

optimal topic count

per single node

18 © Nokia 2017

Kafka throughput

impact of partition count per node (fixed recordsize)

optimal partition count

per single node

19 © Nokia 2017

throughput comparison

RabbitMQ versus Kafka - single node

RabbitMQ is mainly constrained by routing complexity (up till frame sizes of a few 1000 bytes,

at which time packet copying becomes non-negligible)

it is more appropriate to express Kafka throughput in bytes, since Ubyte is dominant even for small frames.

erlang actors

are predictable

JVM GC?

OS cache

20 © Nokia 2017

• RabbitMQ and Kafka

architecture

• broker KPIs

• experimental validation

• use cases, determination

table

21 © Nokia 2017

use case overview

Kafka RabbitMQ

pub/sub with XXL throughput per topic pub/sub with complex routing

enterprise data layer infrastructure (batch and

realtime)

operational metrics tracking with offline processors operational metrics tracking with complex filters on

realtime streams

change feed dispatcher

ingestion system for platforms such as Spark, Fink

(Samza)

RPC dispatcher

transport solution of an IoT PaaS offer

Kafka RabbitMQ

 global throughput XL, throughput per topic within RabbitMQ capabilities

RabbitMQ Kafka

 adding long term storage to RabbitMQ solution

Kafka || RabbitMQ

 legacy integration

combinations?

22 © Nokia 2017

use case determination table - some highlights

Kafka

Streams?

