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The Problem
• We are in the fast data era 
• Companies need continuous processing of 

data and continuous production of results 
• Near real-time processing
• Systems that offer these capabilities are 

Stream Processor (SPs)



The Problem
Modern SPs are distributed in 
order to cope with the volume 

and velocity of data



The Problem: Global State

• Stream processing 
applications process data 
and change some global 
state

• The state is usually stored in 
other systems 

• This fact introduces 
resource overhead

• And complicates the deploy 
of the application



The Problem: Bank System
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Every new request that enters the SP application performs a request to the database.


However, the database is not built to cope with the requests rate that a SP il built for and it becomes 
the bottleneck.
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The Bank System: Issues

user balance
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… …

generate 
transfer

perform
transaction

• Hitting hard the database with reads and 
writes 

• The database is not built to cope with the 
load of the SP 

• We need transactional guarantees for 
consistent deposit and withdrawal operations 
in the same bank transfer



• Built for 
transactional 
behaviour 

• It lacks of distributed 
computation 
capabilities

The Problem: SP vs DB

• Built for distributed 
computation 

• It keeps an internal 
state, but: 

• Not queryable 

• Not transactional

SP



perform
transaction

user balance
Alice $100
Bob $50
… …generate 

transfer

The Solution

Our solution consists in embedding the database in the SP.



The Solution

perform
transaction

user balance
Alice $100
Bob $50
… …generate 

transfer

• We eliminated the bottleneck for external 
communication

• We can fully leverage the parallel execution of 
the SP

• We deploy only one system
• The state is now kept in memory, so its access is 

faster
• But state has to fit the space available in memory

• We need to add transactional behaviour



The Solution
• Built for distributed computation
• Exposes queryable state
• Offers transactional guarantees on state

SP



The SP Model

K V
… …

K V
… …

An operator

A stateful operator

A stream



The SP Model: 
Task Parallelism
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… …

Nodes can be deployed on different machines and transfer data over the network.



The SP model: 
Data Parallelism
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Stream elements can be partitioned in independent sets. 


Every operator can be deployed more than once.


Each instance of the operator will process a partition of the elements.


The function that maps an element to a partition can be user-defined.
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The Solution
• Built for distributed computation
• Exposes queryable state
• Offers transactional guarantees on the state

SP

Task and data parallelism enable distributed computation.


The rest of the presentation will investigate queryable state and transactional guarantees.



The Transactional Subgraph

K V
… …

K V
… …

A transactional subgraph 
is a subset of the original 
graph of computation

We enforce transactional 
guarantees both on read 
and on update of the 
internal state of state 
operators

State operators in a 
transactional subgraph 
expose their internal state
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balance > 0

We give the possibility to specify per-state-operator integrity constraints.


If a constraint is violated the operation is considered not valid and the state will not be affected.
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There can be various possible interleaving of operations in different operators and in different 
partitions.


Interleaving generates conflicts among operations.


Handling or not some type of conflicts leads to different levels of isolation.



Transactional Guarantees: 
Isolation

Depending on the 
implementation of state 
operators and transaction 
coordination we can achieve 
different levels of isolation 

Our model support 
serializable level of isolation 

Transactions produce the 
same effect as some serial 
execution



The Implementation: 
FlowDB

• Implemented on top of the Apache Flink open-
source project 

• We provide APIs to delimit the transactional graph: 

openTransaction(Stream s) 

closeTransaction(Stream s) 

• And to specify state operators and integrity 
constraints



Implementation: Transaction 
handling

coordinator

Open enriches elements with a unique 
transaction ID for tracking purpose 

The coordinator is responsible for merging 
the results of the integrity checks and feed 
them back to state operators

open

K V
… …

K V
… …



user balance
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We use key-level locking 
to provide isolation 

If one key is locked, 
records with the same key 
are enqueued until 
unlock 
Resources are unlocked 
on coordinator notification 
Read-only transactions 
use the same locking 
mechanism

Implementation: State 
Operators

Bob

Charlie

Alice

commit
abort
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The Evaluation

• Compare the performance of FlowDB with 
a state-of-the-art solution, VoltDB 

• Identify the parameters that affects its 
performance through synthetic workloads



The Evaluation: VoltDB
• It is a distributed, in-memory database 
• It partitions data in shards 
• It executes transactions as single-threaded 

stored procedures, which are precompiled 
and optimized 

• If it is a multi-partition transaction, it 
requires coordination



Comparing FlowDB
Bank transfer example (no 
fraud detection mechanism). 

100k accounts on 8 
partitions, 200k transfers 
with uniformly selected 
accounts. 

20 Amazon EC2 t2 XL 
instances, each equipped 
with 4 CPU cores and 16 GB 
of RAM.

Avg latency Throughput

Flink 3.1 ms 68705 t/s

FlowDB 8.2 ms 6235 tr/s

VoltDB 5092 ms 589 tr/s

Please note that pure Flink does not run the same application as FlowDB.


We provide results only to show the overhead of providing transactional behavior.


VoltDB shows its b high frequency of multi-partition transactions.
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The results above let us conclude that in FlowDB the cost for ensuring isolation through a scheduler 
is negligible with respect to the cost of opening transactions, locking resources, and establishing the 
validity of a transaction.



Parallel
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In the case of a single transactional subgraph, the maximum throughput decreases with the number 

of state operators. 


This is due to the increased volume of input data and to the need for collecting results from all the 
state operators to determine the overall validity of a transaction.


Conversely, in the case of multiple transactional subgraphs, the maximum throughput remains 
almost constant, due to the capability of FlowDB to process transactions entirely in parallel.




Other Metrics
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With more than 8 partitions, the throughput starts increasing linearly with the number of partitions, 

reaching almost 10k elements/s with 64 partitions.


Keyspace: even in the extreme case of only 10 keys, FlowDB processes close to 500 elements/s.


Queries: the keyspace size is 50, updates rate is 4500 tr/s, queries lock 10% (5) of the keyspace 

conflicting with concurrent updates as well as with other queries. We observe an increase in the 
latency after 100 queries/s.




Conclusions & Future Work
• We proposed and evaluated a new system that 

integrates stream processing and data 
management systems  

• Promising performance results 
• In the future, we will test FlowDB against real-world 

workloads
• We will investigate fault tolerance and the 

possibility to specify different levels of isolation 
• Optimistic protocols
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