
FlowDB
Integrating Stream Processing

and Consistent State Management

Lorenzo 
Affetti

Alessandro 
Margara

Gianpaolo 
Cugola

The Problem
• We are in the fast data era
• Companies need continuous processing of

data and continuous production of results
• Near real-time processing
• Systems that offer these capabilities are

Stream Processor (SPs)

The Problem
Modern SPs are distributed in
order to cope with the volume

and velocity of data

The Problem: Global State

• Stream processing
applications process data
and change some global
state

• The state is usually stored in
other systems

• This fact introduces
resource overhead

• And complicates the deploy
of the application

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

generate
transfer

perform
transaction

Alice, 10$

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

generate
transfer

perform
transactionAlice, 10$

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

110$

generate
transfer

Alice, 110$perform
transaction

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

110$

generate
transfer

perform
transaction

Bob, 10$

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

110$

generate
transfer

perform
transactionBob, 10$

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

40$
110$

generate
transfer

Bob, 40$perform
transaction

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

40$
110$

generate
transfer

Bob, Alice
10$

perform
transaction

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

40$
110$

generate
transfer

perform
transaction

Alice, 10$
Bob, 10$

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

40$
110$

generate
transfer

perform
transaction

Alice, 10$

Bob, 10$

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

110$

generate
transfer

perform
transaction

30$

Bob, 30$

Alice, 10$

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

110$

generate
transfer

perform
transaction

30$

Alice, 10$

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

generate
transfer

perform
transaction

30$
120$

Alice, 120$

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Problem: Bank System

user balance
Alice $100
Bob $50
… …

generate
transfer

perform
transaction

30$
120$

Every new request that enters the SP application performs a request to the database.

However, the database is not built to cope with the requests rate that a SP il built for and it becomes
the bottleneck.

The Bank System: Issues

user balance
Alice $100
Bob $50
… …

generate
transfer

perform
transaction

• Hitting hard the database with reads and
writes

• The database is not built to cope with the
load of the SP

• We need transactional guarantees for
consistent deposit and withdrawal operations
in the same bank transfer

• Built for
transactional
behaviour

• It lacks of distributed
computation
capabilities

The Problem: SP vs DB

• Built for distributed
computation

• It keeps an internal
state, but:

• Not queryable

• Not transactional

SP

perform
transaction

user balance
Alice $100
Bob $50
… …generate

transfer

The Solution

Our solution consists in embedding the database in the SP.

The Solution

perform
transaction

user balance
Alice $100
Bob $50
… …generate

transfer

• We eliminated the bottleneck for external
communication

• We can fully leverage the parallel execution of
the SP

• We deploy only one system
• The state is now kept in memory, so its access is

faster
• But state has to fit the space available in memory

• We need to add transactional behaviour

The Solution
• Built for distributed computation
• Exposes queryable state
• Offers transactional guarantees on state

SP

The SP Model

K V
… …

K V
… …

An operator

A stateful operator

A stream

The SP Model:
Task Parallelism

K V
… …

K V
… …

K V
… …

Nodes can be deployed on different machines and transfer data over the network.

The SP model:
Data Parallelism

accounts

users from A to D

users from E to M

users from N to Z

user balance
Alice $94

Bob $55
… …

user balance
Paul $1500

Robert $100
… …

Alice, 10$

Stream elements can be partitioned in independent sets.

Every operator can be deployed more than once.

Each instance of the operator will process a partition of the elements.

The function that maps an element to a partition can be user-defined.

The SP model:
Data Parallelism

accounts

users from A to D

users from E to M

users from N to Z

user balance
Alice $94

Bob $55
… …

user balance
Paul $1500

Robert $100
… …

Alice, 10$

Stream elements can be partitioned in independent sets.

Every operator can be deployed more than once.

Each instance of the operator will process a partition of the elements.

The function that maps an element to a partition can be user-defined.

The SP model:
Data Parallelism

accounts

users from A to D

users from E to M

users from N to Z

user balance
Alice $94

Bob $55
… …

user balance
Paul $1500

Robert $100
… …

$104

Stream elements can be partitioned in independent sets.

Every operator can be deployed more than once.

Each instance of the operator will process a partition of the elements.

The function that maps an element to a partition can be user-defined.

The SP model:
Data Parallelism

accounts

users from A to D

users from E to M

users from N to Z

user balance
Alice $94

Bob $55
… …

user balance
Paul $1500

Robert $100
… …

$104

Robert, 20$

Stream elements can be partitioned in independent sets.

Every operator can be deployed more than once.

Each instance of the operator will process a partition of the elements.

The function that maps an element to a partition can be user-defined.

The SP model:
Data Parallelism

accounts

users from A to D

users from E to M

users from N to Z

user balance
Alice $94

Bob $55
… …

user balance
Paul $1500

Robert $100
… …

$104

Robert, 20$

Stream elements can be partitioned in independent sets.

Every operator can be deployed more than once.

Each instance of the operator will process a partition of the elements.

The function that maps an element to a partition can be user-defined.

The SP model:
Data Parallelism

accounts

users from A to D

users from E to M

users from N to Z

user balance
Alice $94

Bob $55
… …

user balance
Paul $1500

Robert $100
… …

$104

$80

Stream elements can be partitioned in independent sets.

Every operator can be deployed more than once.

Each instance of the operator will process a partition of the elements.

The function that maps an element to a partition can be user-defined.

The SP model:
Data Parallelism

accounts

users from A to D

users from E to M

users from N to Z

user balance
Alice $94

Bob $55
… …

user balance
Paul $1500

Robert $100
… …

$104

$80

Stream elements can be partitioned in independent sets.

Every operator can be deployed more than once.

Each instance of the operator will process a partition of the elements.

The function that maps an element to a partition can be user-defined.

The Solution
• Built for distributed computation
• Exposes queryable state
• Offers transactional guarantees on the state

SP

Task and data parallelism enable distributed computation.

The rest of the presentation will investigate queryable state and transactional guarantees.

The Transactional Subgraph

K V
… …

K V
… …

A transactional subgraph
is a subset of the original
graph of computation

We enforce transactional
guarantees both on read
and on update of the
internal state of state
operators

State operators in a
transactional subgraph
expose their internal state

accounts

users from A to D

users from E to M

users from N to Z

user balance
Alice $104

Bob $60
… …

user balance
Paul $1500

Robert $80
… …

Transactional Guarantees:
Integrity constraints

Alice, 200$

balance > 0

We give the possibility to specify per-state-operator integrity constraints.

If a constraint is violated the operation is considered not valid and the state will not be affected.

accounts

users from A to D

users from E to M

users from N to Z

user balance
Alice $104

Bob $60
… …

user balance
Paul $1500

Robert $80
… …

Transactional Guarantees:
Integrity constraints

Alice, 200$

balance > 0

We give the possibility to specify per-state-operator integrity constraints.

If a constraint is violated the operation is considered not valid and the state will not be affected.

accounts

users from A to D

users from E to M

users from N to Z

user balance
Alice $104

Bob $60
… …

user balance
Paul $1500

Robert $80
… …

$200 > $104!

Transactional Guarantees:
Integrity constraints

balance > 0

We give the possibility to specify per-state-operator integrity constraints.

If a constraint is violated the operation is considered not valid and the state will not be affected.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4

Bob $60
… …

user balance
Paul $1600

Robert $80
… …

Alice, Paul
100$

Transactional Guarantees:
Intra-operator Atomicity

generate
transfer

If a transaction affects more than one partition of the same operator and aborts (fails) on one, than it
will abort on every partition.

No state will be affected.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4

Bob $60
… …

user balance
Paul $1600

Robert $80
… …

Alice, Paul
100$

Transactional Guarantees:
Intra-operator Atomicity

Alice, 100$

Paul, 100$

generate
transfer

If a transaction affects more than one partition of the same operator and aborts (fails) on one, than it
will abort on every partition.

No state will be affected.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4

Bob $60
… …

user balance
Paul $1600

Robert $80
… …

Alice, Paul
100$

Transactional Guarantees:
Intra-operator Atomicity

Alice, 100$

Paul, 100$

generate
transfer

If a transaction affects more than one partition of the same operator and aborts (fails) on one, than it
will abort on every partition.

No state will be affected.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4

Bob $60
… …

user balance
Paul $1600

Robert $80
… …

Alice, Paul
100$

$100 > $4!

Transactional Guarantees:
Intra-operator Atomicity

generate
transfer

$1700

If a transaction affects more than one partition of the same operator and aborts (fails) on one, than it
will abort on every partition.

No state will be affected.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4

Bob $60
… …

user balance
Paul $1600

Robert $80
… …

Alice, Paul
100$

$100 > $4!

Transactional Guarantees:
Intra-operator Atomicity

generate
transfer

$1600

If a transaction affects more than one partition of the same operator and aborts (fails) on one, than it
will abort on every partition.

No state will be affected.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

$104

Transactional Guarantees:
Inter-operator Atomicity

fraud detection

users from
 A to D

users from
 E to M

users from
 N to Z

user noTD

Alice 100
Bob 42

… …
Alice

If a transaction affects more than one state operator in the same transactional subgraph and aborts
on one, than it will abort on every operator.

No state will be affected.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

$104

Transactional Guarantees:
Inter-operator Atomicity

fraud detection

users from
 A to D

users from
 E to M

users from
 N to Z

user noTD

Alice 100
Bob 42

… …

no more
than 100

transactions
a day!

If a transaction affects more than one state operator in the same transactional subgraph and aborts
on one, than it will abort on every operator.

No state will be affected.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

Transactional Guarantees:
Inter-operator Atomicity

fraud detection

users from
 A to D

users from
 E to M

users from
 N to Z

user noTD

Alice 100
Bob 42

… …

no more
than 100

transactions
a day!$4

If a transaction affects more than one state operator in the same transactional subgraph and aborts
on one, than it will abort on every operator.

No state will be affected.

op1
A

K V
… …
… …

Transactional Guarantees:
Isolation

B
K V
… …
… …

op3
A

K V
… …
… …

B
K V
… …
… …

op2
A

B

1 2
1 1

12

2
1

2

There can be various possible interleaving of operations in different operators and in different
partitions.

Interleaving generates conflicts among operations.

Handling or not some type of conflicts leads to different levels of isolation.

Transactional Guarantees:
Isolation

Depending on the
implementation of state
operators and transaction
coordination we can achieve
different levels of isolation

Our model support
serializable level of isolation

Transactions produce the
same effect as some serial
execution

The Implementation:
FlowDB

• Implemented on top of the Apache Flink open-
source project

• We provide APIs to delimit the transactional graph:

openTransaction(Stream s)

closeTransaction(Stream s)

• And to specify state operators and integrity
constraints

Implementation: Transaction
handling

coordinator

Open enriches elements with a unique
transaction ID for tracking purpose

The coordinator is responsible for merging
the results of the integrity checks and feed
them back to state operators

open

K V
… …

K V
… …

user balance
Alice $100

Bob $20
Charlie $42

Donald $890

We use key-level locking
to provide isolation

If one key is locked,
records with the same key
are enqueued until
unlock
Resources are unlocked
on coordinator notification
Read-only transactions
use the same locking
mechanism

Implementation: State
Operators

Bob

Charlie

Alice

commit
abort

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

user balance

Paul $1600

Robert $80
… …

Implementation: Ordering
for Serializability

generate transfer

partition 1

Alice, Paul

partition 2

Alice, Paul

The graph of computation doesn’t provide us with any guarantee about the ordering of record
processing by downstream operators.

It could be that two transactions affect some state in different order.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

user balance

Paul $1600

Robert $80
… …

Paul

Implementation: Ordering
for Serializability

generate transfer

partition 1

partition 2

Alice

Paul

Alice

The graph of computation doesn’t provide us with any guarantee about the ordering of record
processing by downstream operators.

It could be that two transactions affect some state in different order.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

user balance

Paul $1600

Robert $80
… …

Paul

Implementation: Ordering
for Serializability

generate transfer

partition 1

partition 2

Alice

Paul

Alice

T

T

The graph of computation doesn’t provide us with any guarantee about the ordering of record
processing by downstream operators.

It could be that two transactions affect some state in different order.

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

user balance

Paul $1600

Robert $80
… …

Paul

Implementation: Ordering
for Serializability

generate transfer

partition 1

partition 2

Alice

Paul

Alice

-> TT

-> TT

The graph of computation doesn’t provide us with any guarantee about the ordering of record
processing by downstream operators.

It could be that two transactions affect some state in different order.

scheduler

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

user balance

Paul $1600

Robert $80
… …

Implementation: Ordering
for Serializability

generate transfer

partition 1

Alice, Paul

partition 2

Alice, Paul

That’s why we need schedulers to impose a total order on elements.

scheduler

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

user balance

Paul $1600

Robert $80
… …

Implementation: Ordering
for Serializability

generate transfer

partition 1

partition 2
Paul

Alice

Paul

Alice

That’s why we need schedulers to impose a total order on elements.

scheduler

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

user balance

Paul $1600

Robert $80
… …

Implementation: Ordering
for Serializability

generate transfer

partition 1

partition 2
Paul

Alice

Paul

Alice

That’s why we need schedulers to impose a total order on elements.

scheduler

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

user balance

Paul $1600

Robert $80
… …

Implementation: Ordering
for Serializability

generate transfer

partition 1

partition 2

T

T

Paul

Alice

Paul

Alice

That’s why we need schedulers to impose a total order on elements.

scheduler

accounts

users from
 A to D

users from
 E to M

users from
 N to Z

user balance

Alice $4
Bob $60

… …

user balance

Paul $1600

Robert $80
… …

Implementation: Ordering
for Serializability

generate transfer

partition 1

partition 2

-> TT

-> TT

Paul

Alice

Paul

Alice

That’s why we need schedulers to impose a total order on elements.

The Evaluation

• Compare the performance of FlowDB with
a state-of-the-art solution, VoltDB

• Identify the parameters that affects its
performance through synthetic workloads

The Evaluation: VoltDB
• It is a distributed, in-memory database
• It partitions data in shards
• It executes transactions as single-threaded

stored procedures, which are precompiled
and optimized

• If it is a multi-partition transaction, it
requires coordination

Comparing FlowDB
Bank transfer example (no
fraud detection mechanism).

100k accounts on 8
partitions, 200k transfers
with uniformly selected
accounts.

20 Amazon EC2 t2 XL
instances, each equipped
with 4 CPU cores and 16 GB
of RAM.

Avg latency Throughput

Flink 3.1 ms 68705 t/s

FlowDB 8.2 ms 6235 tr/s

VoltDB 5092 ms 589 tr/s

Please note that pure Flink does not run the same application as FlowDB.

We provide results only to show the overhead of providing transactional behavior.

VoltDB shows its b high frequency of multi-partition transactions.

Series

 0
 5

 10
 15
 20
 25
 30

 1 2 3 4 5

Av
er

ag
e

la
te

nc
y

(m
s)

Number of state operators

Single transact. subgraph
One transact. subgraph per state op.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 1 2 3 4 5

M
ax

im
um

 in
pu

t t
hr

ou
gh

pu
t (

el
/s

)

Number of state operators

Single transact. subgraph
One transact. subgraph per state op.

sch … close

close … close

The results above let us conclude that in FlowDB the cost for ensuring isolation through a scheduler
is negligible with respect to the cost of opening transactions, locking resources, and establishing the
validity of a transaction.

Parallel

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 1 2 3 4 5

M
ax

im
um

 in
pu

t t
hr

ou
gh

pu
t (

el
/s

)

Number of state operators

Single transact. subgraph
One transact. subgraph per state op.…

close

close

…

close close

In the case of a single transactional subgraph, the maximum throughput decreases with the number

of state operators.

This is due to the increased volume of input data and to the need for collecting results from all the
state operators to determine the overall validity of a transaction.

Conversely, in the case of multiple transactional subgraphs, the maximum throughput remains
almost constant, due to the capability of FlowDB to process transactions entirely in parallel.

Other Metrics

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000

 0.01 0.1 1 10 100 1000

M
ax

im
um

 in
pu

t t
hr

ou
gh

pu
t (

el
/s

)

Number of unique state keys (thousands)

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 1 10 100

M
ax

im
um

 in
pu

t t
hr

ou
gh

pu
t (

el
/s

)

Number of state partitions

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 10 100 1000 10000

Av
er

ag
e

la
te

nc
y

(m
s)

Frequency of queries (queries/s)

Latency for updates
Latency for queries

With more than 8 partitions, the throughput starts increasing linearly with the number of partitions,

reaching almost 10k elements/s with 64 partitions.

Keyspace: even in the extreme case of only 10 keys, FlowDB processes close to 500 elements/s.

Queries: the keyspace size is 50, updates rate is 4500 tr/s, queries lock 10% (5) of the keyspace

conflicting with concurrent updates as well as with other queries. We observe an increase in the
latency after 100 queries/s.

Conclusions & Future Work
• We proposed and evaluated a new system that

integrates stream processing and data
management systems

• Promising performance results
• In the future, we will test FlowDB against real-world

workloads
• We will investigate fault tolerance and the

possibility to specify different levels of isolation
• Optimistic protocols

Q&A

