
An Autonomous and Dynamic

Coordination and Discovery Service

for Wide-Area Peer-to-peer

Publish/Subscribe
Kyoungho An, Shweta Khare, Aniruddha Gokhale and Akram Hakiri

kyoungo.an@rti.com,{shweta.p.khare,a.gokhale}@vanderbilt.edu,

akram.hakiri@gmail.com

Data Distribution Needs for IIoT

❖ IIoT applications are highly

distributed and mission-critical

❖Requiring:

➢Geographically distributed data

dissemination

➢Strict Quality of Service (QoS)

guarantees:

■ Reliability

■ Durability

■ Timeliness

■ Security

❖ Publish/Subscribe communication paradigm is well suited for

IIoT application needs as it provides scalable and decoupled

data delivery among communicating peers.

OMG Data Distribution Service (DDS): Publish/Subscribe

standard for IIoT

❖ OMG DDS is a data-centric,

anonymous, topic-based

publish/subscribe standard.

❖ Peer-to-Peer architecture supports

low-latency and scalable data

delivery.

❖ Configurable QoS policies:

➢Reliability, Durability,

Deadline, Liveliness,

Ownership, Lifespan, History,

Resource Limits, etc.

OMG DDS: Limitations for WAN-Scale Use

❖ Current technology limitations

restrict the use of DDS to a

single LAN:

➢DDS uses multicast for

discovery

➢NAT/Firewall use

prevents data distribution

across LANs.

➢Existing broker-based

solutions to bridge DDS

LANs:
■ Not Scalable: Require manual configuration

■ Require invasive changes to the application

code

■ Lack autonomous and dynamic discovery

and coordination service to interconnect peers

across multiple networks

A readily available, rapidly deployable, and non-invasive

middleware solution to autonomously discover and

interconnect DDS peers at WAN-scale does not exist.

In Summary

Coordination

layer

Pub/Sub

overlay layer

Physical

layer

❖ 2-Level Broker architecture for

low latency (maximum 2-hop)

dissemination.

➢ Edge Broker Layer: serves as

a gateway for locally connected

endpoints in a LAN

➢ Routing Broker Layer: serves

as a mediator to route data

between edge brokers according

to assigned and matched topics

❖ Coordination layer is

responsible for autonomous

discovery and data routing

between brokers.

PubSubCoord:Solution Architecture

❖ Local Communication at the Edge:

➢ P1 and S1 are interested in topic

A. Since they reside in the same

network, they communicate via

UDP-based unicast without

incurring a hop to the routing

broker layer.

❖ Communication across networks

via Routing Broker layer:

➢ P2, P4, and S2 are interested in

topic B but are deployed in

different networks, so their

communications are routed

through a routing broker that is

responsible for topic B.

PubSubCoord: Data Dissemination

❖ Low-latency (maximum 2-hop) data

dissemination over the broker overlay network

❖ Load balancing at routing broker layer via

elastic autoscaling

❖ Easy state maintenance

❖ Failed Edge Brokers do not affect other Edge

Brokers.

❖ Efficient intra-LAN dissemination
➢ traffic that is local is not allowed to reach the

routing brokers

➢ local dissemination is handled by the edge

brokers themselves thereby avoiding round-trip

WAN latencies

Benefits of PubSubCoord Design

❖ PubSubCoord uses a coordination layer comprising

an ensemble of ZooKeeper servers, which help

brokers discover each other and build broker overlay

networks

❖ Zookeeper is a centralized and replicated service

which provides generic constructs for distributed

coordination. Example: Leader election, group

membership, locks, etc.

➢Znodes: Data Model of Zookeeper is structured

like a file system comprising of znodes-

Zookeeper data object (path and data)

➢Watch Mechanism: notifies a client of

ZooKeeper of a change to a znode that is being

watched by that client.

PubSubCoord Design: Coordination Layer

PubSubCoord

Data Model

❖ In case of congested, slow or lossy WAN links over

the two-hop route connecting Edge brokers via a

Routing broker, PubSubCoord supports Deadline-

Aware overlays, which directly interconnect two

Edge-Brokers:

➢Improves reliability and latency by providing an

additional one hop path, directly interconnecting

two edge brokers

➢Leveraged by pub/sub streams that require

stringent assurance and deadline-driven data

delivery.

➢Uses DDS deadline QoS that expresses the

maximum duration within which a sample has to be

updated.

PubSubCoord Design: QoS Optimization

❖ Load Balancing: Leader Routing Broker

distributes topics among worker Routing

Brokers. Example: least loaded routing

broker in terms of number of topics,

CPU/network utilization, etc.

❖ Fault Tolerance: Leader Routing Broker

reassigns topics handled by a failed

broker to another worker Routing broker

to avoid service cessation. ZooKeeper’s

watch mechanism is used to notify the

appropriate edge brokers to update their

paths to the right routing broker.

PubSubCoord Design: Load Balancing & Fault Tolerance

Leader RB performs load balancing

of topics among worker brokers and

redistribution of topics on broker

failure.

❖ OpenStack private cloud comprising 60

physical machines each with 12 cores and

32 GB of memory.

❖ VM configuration: 1VCPU and 2GB RAM.

Edge and Routing broker instances run in

their own VM. Multiple publisher and

subscriber test applications share a VM.

❖ Neutron was used to create 120 virtual

networks/LANs.

❖ Emulated latencies: 20 milliseconds

roundtrip LAN and 80 milliseconds roundtrip

WAN

❖ PTP time Synchronization.

❖ RTI Connext 5.1 is used for implementation.

Experiment Setup: Testbed Configuration

❖ All DDS endpoints are configured with the following QoS settings:

➢RELIABLE reliability QoS: Reliable data delivery at transport-level

➢KEEP_ALL history QoS: Keep all data history in memory

➢TRANSIENT durability QoS: Deliver history data for late joiners

➢LIFESPAN QoS 60 seconds: Keep data history for 60 seconds

❖ Publishers send 64Byte messages every 50 miliseconds.

❖ 5000 messages are sent per publisher. Only use values only aſter 1,000 samples

since the latency values of initial samples are not consistent due to coordination

and discovery overhead

❖ End-to-end latency was calculated as the time difference between the send

timestamp at the publisher and reception timestamp at the subscriber.

Experiment Setup: Test application configuration

Edge Broker layer is responsible

for dissemination of local traffic

thereby preventing WAN latencies.

❖ Measure end-to-end latency

for different values of data

locality:

➢ fraction of topics in an

isolated network which are

local to the network and

do not have interested

subscribers in another

network

❖ As the data locality increases,

the end-to-end dissemination

latency decreases

Data Locality Experiment

❖ 400 VMs were used: 120 VMs for edge brokers; 40 VMs for routing

brokers; 40 VMs were used for publishers and 200 VMs for subscribers.

❖ VM for publishers hosts 25 publisher applications. VM for subscribers

hosts 50 subscriber test applications. Thereby, creating a total of 1000

publishers and 10,000 subscribers

❖ Subscribers in each network are interested in 100 topics out of 1000 topics

in the system.

Scalability Experiment Setup

❖ The computation

overhead and end-to-end

dissemination latency

grows linearly with the

number of adopted topics

at the Edge Broker.

Scalability Experiment:

Number of Topics

Our solution supports load

balancing at the Routing

Broker Layer.

❖ When there are 5

instances of Routing

Brokers, the CPU of the

routing brokers becomes

saturated and latency gets

adversely impacted.

❖ Latency values improve

on scaling-up the number

of routing brokers to 10.

Scalability Experiment:

RB Load Balancing

To evaluate the scalability of ZK based

centralized coordination, the number of

simultaneously joining subscribers is

increased from 2,000 to 10,000 in steps

of 2,000.

❖ Time taken by ZK server to respond

to a client request, increases from

10ms to 20ms with increasing

number of subscribers.

❖ Number of znodes and watches

increases as the system scales.

❖ Overhead of ZooKeeper based

centralized coordination service

remains acceptable even at scale.

Scalability Experiment:

ZK Coordination

Deadline Aware Overlays are used for topics which

have stricter data delivery requirements in case of

congested, lossy or slow WAN links.

❖ Compare the dissemination latency and broker

overhead for deadline-aware multi-path vs single-

path overlays under different WAN link

configurations:

➢ A: 30ms delay and no packet loss

➢ B: 250 msec delay and 1% packet loss

Deadline Aware Overlay Experiment:

Deadline Aware Overlay

Experiment:

❖ Test cases 1 to 5 for multi-path

overlays perform better than

single-path overlays.

❖ Topics with strict delivery

requirements can benefit from

deadline-aware overlays under

adverse WAN link conditions.

❖ Maintaining multi-path overlays

impose additional computation

and network transfer overhead

at the edge broker

Conclusions
❖ Presented PubSubCoord which is an autonomous and dynamic

coordination and discovery service for WAN-scale DDS applications

❖ PubSubCoord disseminates data in a scalable manner for systems

having many pub/sub endpoints and topics across multiple

networks.

❖ Centralized coordination service like ZooKeeper can serve as a

pub/sub control plane for large-scale systems

❖ Configurable QoS supported by DDS can be used for low-latency

data delivery in WANs by building multipath overlays

❖ Future work

➢ Effective load balancing algorithms at routing broker layer

➢Experiment with IoT systems (smart transportation)

➢Support for other pub/sub technologies

➢Interoperability

➢Integration with SDN and Time Sensitive Networking

Thank you.

